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In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5

position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved

in gene repression or by inhibiting the binding of transcription factor(s) to DNA. During development, the pattern of DNA

methylation in the genome changes as a result of a dynamic process involving both de novo DNA methylation and

demethylation. As a consequence, differentiated cells develop a stable and unique DNA methylation pattern that regulates

tissue-specific gene transcription. In this chapter, we will review the process of DNA methylation and demethylation in the

nervous system. We will describe the DNA (de)methylation machinery and its association with other epigenetic mechanisms

such as histone modifications and noncoding RNAs. Intriguingly, postmitotic neurons still express DNA methyltransferases

and components involved in DNA demethylation. Moreover, neuronal activity can modulate their pattern of DNA methylation

in response to physiological and environmental stimuli. The precise regulation of DNA methylation is essential for normal

cognitive function. Indeed, when DNA methylation is altered as a result of developmental mutations or environmental risk

factors, such as drug exposure and neural injury, mental impairment is a common side effect. The investigation into DNA

methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and

provides possible therapeutic targets for the treatment of neuropsychiatric disorders.

Neuropsychopharmacology Reviews advance online publication, 11 July 2012; doi:10.1038/npp.2012.112
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INTRODUCTION

Genetics is the study of heritable changes in gene activity or
function due to the direct alteration of the DNA sequence.
Such alterations include point mutations, deletions, inser-
tions, and translocation. In contrast, epigenetics is the study
of heritable changes in gene activity or function that is not
associated with any change of the DNA sequence itself.
Although virtually all cells in an organism contain the
same genetic information, not all genes are expressed
simultaneously by all cell types. In a broader sense,
epigenetic mechanisms mediate the diversified gene expres-
sion profiles in a variety of cells and tissues in multicellular
organisms.

In this chapter, we would introduce a major epigenetic
mechanism involving direct chemical modification to the
DNA called DNA methylation. Historically, DNA methyla-
tion was discovered in mammals as early as DNA was

identified as the genetic material (Avery et al, 1944; McCarty
and Avery, 1946). In 1948, Rollin Hotchkiss first discovered
modified cytosine in a preparation of calf thymus using
paper chromatography. Hotchkiss (1948) hypothesized that
this fraction was 5-methylcytosine (5mC) because it
separated from cytosine in a manner that was similar to
the way that thymine (also known as methyluracil) separated
from uracil, and he further suggested that this modified
cytosine existed naturally in DNA. Although many research-
ers proposed that DNA methylation might regulate gene
expression, it was not until the 1980s that several studies
demonstrated that DNA methylation was involved in gene
regulation and cell differentiation (Holliday and Pugh, 1975;
Compere and Palmiter, 1981). It is now well recognized that
DNA methylation, in concert with other regulators, is a
major epigenetic factor influencing gene activities.

DNA methylation is catalyzed by a family of DNA
methyltransferases (Dnmts) that transfer a methyl group
from S-adenyl methionine (SAM) to the fifth carbon of a
cytosine residue to form 5mC (Figure 1). Dnmt3a and
Dnmt3b can establish a new methylation pattern to
unmodified DNA and are thus known as de novo Dnmt
(Figure 1a). On the other hand, Dnmt1 functions during
DNA replication to copy the DNA methylation pattern fromReceived 6 March 2012; revised 7 May 2012; accepted 8 May 2012
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the parental DNA strand onto the newly synthesized
daughter strand (Figure 1b). All three Dnmts are extensively
involved in the development of an embryo. By the time cells
reach terminal differentiation, Dnmt expression is much
reduced. This would seem to suggest that the DNA methyla-
tion pattern in postmitotic cells is stable. However,
postmitotic neurons in the mature mammalian brain still
express substantial levels of Dnmts, raising the possibility
that Dnmts and DNA methylation may play a novel role in
the brain (Goto et al, 1994; Feng et al, 2005).

Neurons react to the environment through patterns of
depolarization that both relay information and encode a
response. In recent years, it has become increasingly
apparent that following depolarization, alterations in gene
expression are accompanied by modifications of the
epigenetic landscape that include alterations in the pattern
of DNA methylation (Martinowich et al, 2003; Guo et al,
2011a). In order for the DNA methylation pattern to be
altered, there must be both active DNA methylation and
demethylation in the neuronal genome. However, no
enzymes are known to cleave the methyl group directly
from 5mC. As discussed below, the recent identification of
5-hydroxymethyl-cytosine (5hmC) in postmitotic neurons
suggests that 5hmC serves as an intermediate in the DNA

demethylation pathway. In this review, we will discuss the
basic function of DNA methylation in epigenetic gene
regulation, and further highlight its role in neural develop-
ment and neurological disease.

LOCATION OF DNA METHYLATION

Although the brain contains some of the highest levels of
DNA methylation of any tissue in the body, 5mC only
accounts for B1% of nucleic acids in the human genome
(Ehrlich et al, 1982). The majority of DNA methylation
occurs on cytosines that precede a guanine nucleotide or
CpG sites. Overall, mammalian genomes are depleted of
CpG sites that may result from the mutagenic potential of
5mC that can deaminate to thymine (Coulondre et al, 1978;
Bird, 1980). The remaining CpG sites are spread out across
the genome where they are heavily methylated with the
exception of CpG islands (Bird et al, 1985). Interestingly,
there is evidence of non-CpG methylation in mouse and
human embryonic stem cells, however these methylation
are lost in mature tissues (Ramsahoye et al, 2000; Lister
et al, 2009). More thorough analysis of the murine frontal
cortex has recently revealed that although the majority of
methylation occurs within CpG sites, there is a significant
percentage of methylated non-CpG sites (Xie et al, 2012).
Because of its recent discovery, the role of non-CpG
methylation is still unclear.

DNA methylation is essential for silencing retroviral
elements, regulating tissue-specific gene expression, geno-
mic imprinting, and X chromosome inactivation. Impor-
tantly, DNA methylation in different genomic regions may
exert different influences on gene activities based on the
underlying genetic sequence. In the following sections, we
will further elaborate upon the role of DNA methylation in
different genomic regions.

Intergenic Regions

Approximately 45% of the mammalian genome consists of
transposable and viral elements that are silenced by bulk
methylation (Schulz et al, 2006). The vast majority of these
elements are inactivated by DNA methylation or by
mutations acquired over time as the result of the deamina-
tion of 5mC (Walsh et al, 1998). If expressed, these elements
are potentially harmful as their replication and insertion
can lead to gene disruption and DNA mutation (Michaud
et al, 1994; Wu et al, 1997; Kuster et al, 1997; Gwynn et al,
1998; Ukai et al, 2003). The intracisternal A particle (IAP) is
one of most aggressive retroviruses in the mouse genome
(Walsh et al, 1998). IAP is heavily methylated throughout
life in gametogenesis, development, and adulthood (Walsh
et al, 1998; Gaudet et al, 2004). Even within the embryo
when the rest of the genome is relatively hypomethylated,
Dnmt1 maintains the repression of IAP elements (Gaudet
et al, 2004). When Dnmt1 is depleted by genetic mutations,
leading to extensive hypomethylation, IAP elements are
expressed (Walsh et al, 1998; Hutnick et al, 2010). This
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Figure 1. DNA methylation pathways. A family of DNA methyltrans-
ferases (Dnmts) catalyzes the transfer of a methyl group from S-adenyl
methionine (SAM) to the fifth carbon of cytosine residue to form 5-
methylcytosine (5mC). (a) Dnmt3a and Dnmt3b are the de novo Dnmts
and transfer methyl groups (red) onto naked DNA. (b) Dnmt1 is the
maintenance Dnmt and maintains DNA methylation pattern during
replication. When DNA undergoes semiconservative replication, the
parental DNA stand retains the original DNA methylation pattern (gray).
Dnmt1 associates at the replication foci and precisely replicates the
original DNA methylation pattern by adding methyl groups (red) onto the
newly formed daughter strand (blue).
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demonstrates that within intergenic regions, one of the
main roles of DNA methylation is to repress the expression
of potentially harmful genetic elements.

CpG Islands

CpG islands are stretches of DNA roughly 1000 base pairs
long that have a higher CpG density than the rest of the
genome but often are not methylated (Bird et al, 1985). The
majority of gene promoters, roughly 70%, reside within CpG
islands (Saxonov et al, 2006). In particular, the promoters for
housekeeping genes are often imbedded in CpG islands
(Gardiner-Garden and Frommer, 1987). CpG islands, espe-
cially those associated with promoters, are highly conserved
between mice and humans (Illingworth et al, 2010). The
location and preservation of CpG islands throughout
evolution implies that these regions possess a functional
importance.

It appears that CpG islands have been evolutionarily
conserved to promote gene expression by regulating the
chromatin structure and transcription factor binding. DNA
is regularly wrapped around histone proteins forming small,
packaged sections called nucleosomes. The more tightly
associated with histone proteins the DNA is, the less
permissive it is for gene expression. One of the common
features of CpG islands is that they contain less nucleo-
somes than other stretches of DNA (Tazi and Bird, 1990;
Ramirez-Carrozzi et al, 2009; Choi, 2010). The few
nucleosomes with which CpG islands are associated often
contain histones with modifications involved in enhancing
gene expression (Tazi and Bird, 1990; Mikkelsen et al,
2007). Although B50% of CpG islands contain known
transcription start sites, CpG islands are often devoid of
common promoter elements such as TATA boxes (Carninci
et al, 2006). As many transcription factor binding sites are
GC rich, CpG islands are likely to enhance binding to
transcriptional start sites. Despite their lack of common
promoter elements, CpG islands enhance the accessibility of
DNA and promote transcription factor binding.

The methylation of CpG islands results in stable silencing
of gene expression (Mohn et al, 2008). During gametogenesis
and early embryonic development, CpG islands undergo
differential methylation (Wutz et al, 1997; Caspary et al,
1998; Zwart et al, 2001; Kantor et al, 2004). The ability of
methylation to regulate gene expression through CpG
islands is particularly important for establishing imprinting
(Wutz et al, 1997; Caspary et al, 1998; Zwart et al, 2001; Choi
et al, 2005). Imprinted genes are expressed from only one of
the two inherited parental chromosomes and their expres-
sion is determined by the parent of inheritance. Beyond
imprinted genes, DNA methylation of CpG islands regulates
gene expression during development and differentiation
(Shen et al, 2007; Weber et al, 2007; Fouse et al, 2008; Mohn
et al, 2008; Meissner et al, 2008). As CpG islands are
associated with the control of gene expression, it would be
expected that CpG islands might display tissue-specific
patterns of DNA methylation. Although CpG islands in

intragenic and gene body regions can have tissue-specific
patterns of methylation, CpG islands associated with
transcription start sites rarely show tissue-specific methyla-
tion patterns (Rakyan et al, 2004; Eckhardt et al, 2006;
Meissner et al, 2008; Illingworth et al, 2010; Maunakea et al,
2010). Instead, regions called CpG island shores, located as
far as 2 kb from CpG islands, have highly conserved patterns
of tissue-specific methylation (Irizarry et al, 2009). Like CpG
islands, the methylation of CpG shores is highly correlated
with reduced gene expression (Irizarry et al, 2009).

The role of CpG islands in regulating gene expression is
still being uncovered. Methylation of CpG islands can
impair transcription factor binding, recruit repressive
methyl-binding proteins, and stably silence gene expres-
sion. However, CpG islands, especially those associated with
gene promoters, are rarely methylated. Further studies are
needed to determine to what degree DNA methylation of
CpG islands regulates gene expression.

Gene Body

As the majority of CpG sites within the mammalian genome
are methylated, the genes themselves must also contain
methylation. The gene body is considered the region of the
gene past the first exon because methylation of the first
exon, like promoter methylation, leads to gene silencing
(Brenet et al, 2011). Evidence suggests that DNA methyla-
tion of the gene body is associated with a higher level of
gene expression in dividing cells (Hellman and Chess, 2007;
Ball et al, 2009; Aran et al, 2011). However, in slowly
dividing and nondividing cells such as the brain, gene body
methylation is not associated with increased gene expres-
sion (Aran et al, 2011; Guo et al, 2011a, b; Xie et al, 2012).
Furthermore, in the murine frontal cortex, methylation of
non-CpG sites within gene bodies is negatively correlated
with gene expression (Xie et al, 2012). How DNA
methylation of the gene body contributes to gene regulation
is still unclear.

BASIC MECHANISM OF DNA METHYLATION

The enzymes that establish, recognize, and remove DNA
methylation are broken into three classes: writers, erasers,
and readers. Writers are the enzymes that catalyze the
addition of methyl groups onto cytosine residues. Erasers
modify and remove the methyl group. Readers recognize
and bind to methyl groups to ultimately influence gene
expression. Thanks to the many years of research devoted to
understanding how the epigenetic landscape is erased and
reshaped during embryonic development, many of the
proteins and mechanisms involved in DNA methylation
have already been identified.

Writing DNA Methylation: the Dnmts

Three members of the Dnmt family directly catalyze the
addition of methyl groups onto DNA: Dnmt1, Dnmt3a, and
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Dnmt3b. Although these enzymes share a similar structure
with a large N-terminal regulatory domain and a C-terminal
catalytic domain, they have unique functions and expres-
sion patterns (Yen et al, 1992; Xie et al, 1999). Probably the
best studied Dnmt, especially in the nervous system, is
Dnmt1, which is highly expressed in mammalian tissues
including the brain (Goto et al, 1994). Unlike the other
Dnmts, Dnmt1 preferentially methylates hemimethylated
DNA (Pradhan et al, 1999; Ramsahoye et al, 2000). During
DNA replication, Dnmt1 localizes to the replication fork
where newly synthesized hemimethylated DNA is formed
(Leonhardt et al, 1992). Dnmt1 binds to the newly syn-
thesized DNA and methylates it to precisely mimic the
original methylation pattern present before DNA replication
(Hermann et al, 2004) (Figure 1b). Additionally, Dnmt1 also
has the ability to repair DNA methylation (Mortusewicz
et al, 2005). For this reason, Dnmt1 is called the main-
tenance Dnmt because it maintains the original pattern of
DNA methylation in a cell lineage. Knockout of Dnmt1 in
mice results in embryonic lethality between E8.0 and E10.5
(Li et al, 1992). At this time, knockout embryos exhibit
a two-thirds loss of DNA methylation, in addition to
numerous apoptotic cells in a variety of developing tissues
including the brain. Interestingly, mouse embryonic stem
cells lacking Dnmt1 remain viable (Chen et al, 1998).
However, in vitro differentiation results in massive cell
death, recapitulating the phenotype observed in knockout
embryos (Jackson-Grusby et al, 2001). These findings firmly
establish that Dnmt1 plays a critical role in cellular
differentiation as well as in dividing cells.

Dnmt3a and Dnmt3b are extremely similar in structure
and function. Unlike Dnmt1, both Dnmt3a and Dnmt3b
when overexpressed are capable of methylating both native
and synthetic DNA with no preference for hemimethylated
DNA (Okano et al, 1999). For this reason, Dnmt3a and
Dnmt3b are referred to as de novo Dnmt because they can
introduce methylation into naked DNA (Figure 1a). What
primarily distinguishes Dnmt3a from Dnmt3b is its gene
expression pattern. Although Dnmt3a is expressed relatively
ubiquitously, Dnmt3b is poorly expressed by the majority of
differentiated tissues with the exception of the thyroid,
testes, and bone marrow (Xie et al, 1999). Similar to Dnmt1,
the knockout of Dnmt3b in mice is embryonic lethal (Okano
et al, 1999). On the other hand, Dnmt3a knockout mice are
runted but survive to B4 weeks after birth (Okano et al,
1999). From these results it appears that Dnmt3b is required
during early development, whereas Dnmt3a is required for
normal cellular differentiation.

A final member of the Dnmt family is Dnmt3L, a protein
that lacks the catalytic domain present in other Dnmt
enzymes (Aapola et al, 2000; Hata et al, 2002). Dnmt3L is
mainly expressed in early development and is restricted to
the germ cells and thymus in adulthood (Aapola et al, 2000,
2001). Although Dnmt3L has no catalytic function of its
own, it associates with the Dnmt3a and Dnmt3b and
stimulates their methyltransferase activity (Hata et al, 2002;
Suetake et al, 2004; Jia et al, 2007). Consistent with its

presence in early development and in germ cells, in mice,
Dnmt3L is required for establishing both maternal and
paternal genomic imprinting, for methylating retrotran-
sposons, and for compaction of the X chromosome
(Bourc’his et al, 2001; Hata et al, 2002; Kaneda et al,
2004; Bourc’his and Bestor, 2004; Webster et al, 2005; La
Salle et al, 2007; Zamudio et al, 2011). Although Dnmt3L
is expressed in the developing brain, Dnmt3L is down-
regulated during neuronal differentiation and is not
observed in the brain postnatally (Lee et al, 2006;
Kovacheva et al, 2007).

Writing DNA Methylation: Targeting De Novo DNA
Methylation

(How the de novo Dnmts target specific genetic regions is still
unclear). However, several mechanisms have been proposed.
Dnmt3a and Dnmt3b can bind to DNA via a conserved
PWWP domain (Ge et al, 2004); however, it is unclear how
Dnmt3a and Dnmt3b target specific DNA sequences. One
hypothesis suggests that RNA interference (RNAi) mechan-
isms target Dnmts to silence specific sequences of DNA
(Morris et al, 2004). Although RNAi is clearly involved in
DNA methylation in plant cells, the existing evidence is still
very weak for a role of RNAi in DNA methylation in
mammalian cells. The other theory is that transcription
factors regulate de novo DNA methylation. Transcription
factors can regulate DNA methylation by binding to specific
DNA sequence to either recruit Dnmts for methylation or
protect from DNA methylation. In some cases Dnmts bind to
transcription factors or components of repressor complexes
to target methylation to DNA (Brenner et al, 2005). In
other cases, regardless of whether the gene is expressed, the
transcription factor binding can help protect CpG sites from
de novo methylation (Straussman et al, 2009; Gebhard et al,
2010; Lienert et al, 2011). CpG islands appear to primarily be
protected from methylation by transcription factor binding
(Brandeis et al, 1994; Macleod et al, 1994; Straussman et al,
2009; Gebhard et al, 2010). When transcription factor
binding sites are mutated, CpG islands are unable to retain
their unmethylated state (Brandeis et al, 1994; Macleod et al,
1994). Similarly, as differentiation induces the downregula-
tion of transcription factors that bind to specific gene
promoters, the now-exposed CpG sites can be targeted for
DNA methylation (Lienert et al, 2011). These studies
describe two mechanisms that likely function together to
establish de novo DNA methylation. Dnmt3a and Dnmt3b
can either be recruited to promoters by specific transcrip-
tion factors or the de novo Dnmt may simply methylate all
CpG sites across the genome that are not protected by a
bound transcription factor.

Erasing DNA Methylation

DNA demethylation is characterized as either passive or
active. Passive DNA demethylation occurs in dividing cells.
As Dnmt1 actively maintains DNA methylation during cell
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replication, its inhibition or dysfunction allows newly
incorporated cytosine to remain unmethylated and conse-
quently reduces the overall methylation level following each
cell division. Active DNA demethylation can occur in both
dividing and nondividing cells but the process requires
enzymatic reactions to process the 5mC in order to revert it
back to a naked cytosine (Mayer et al, 2000; Oswald et al,
2000; Paroush et al, 1990; Zhang et al, 2007). As of yet, there
is no known mechanism in mammalian cells that can cleave
the strong covalent carbon-to-carbon bond that connects
cytosine to a methyl group. Instead, demethylation occurs
through a series of chemical reactions that further modify
5mC, by deamination and/or oxidation reactions to a
product that is recognized by the base excision repair
(BER) pathway to replace the modified base with naked
cytosine. Although it is generally agreed upon that the
BER pathway is the final step in DNA demethylation, the
specific enzymes and the chemical intermediates that are
formed during DNA demethylation are still debated
(Bhutani et al, 2011).

Several mechanisms of active DNA demethylation have
been proposed (Figure 2). 5mC can be chemically modified
at two sites, the amine group and the methyl group.
Deamination of the amine to a carbonyl group by AID/
APOBEC (activation-induced cytidine deaminase/apolipo-
protein B mRNA-editing enzyme complex) effectively
converts 5mC into thymine, thus creating a G/T mismatch
and inducing the BER pathway to correct the base.
Overexpression of AID/APOBEC promotes DNA demethy-
lation in zebrafish (Rai et al, 2008), whereas knockdown or
knockout inhibits the DNA demethylation of various genes
necessary for cellular reprogramming and development
(Bhutani et al, 2010; Muramatsu et al, 2000; Popp et al,
2010). Unlike the various Dnmt knockout mice, knockout
AID mice are viable and fertile. If global DNA demethyla-
tion is as critical as DNA methylation in early development,
then the knockout AID mice study raises the possibility that
multiple mechanisms for active DNA demethylation exist
and can compensate for one another.

In line with the multiple mechanisms hypothesis, another
active DNA demethylation mechanism is found to be
mediated by the ten–eleven translocation (Tet) enzymes
Tet1, Tet2, and Tet3. Tet enzymes add a hydroxyl group
onto the methyl group of 5mC to form 5hmC (Tahiliani
et al, 2009; Ito et al, 2010). The developed brain contains
significant 5hmC levels in multiple regions, ranging from
0.3 to 0.7%, which is approximately tenfold lower than the
average abundance of 5mC (Kriaucionis and Heintz, 2009;
Globisch et al, 2010). Once 5hmC is formed, two separate
mechanisms can convert 5hmC back into cytosine in
mammals. In the first, iterative oxidation by Tet enzymes
continues to oxidize 5hmC first to 5-formyl-cytosine and
then to 5-carboxy-cytosine (Ito et al, 2011). In the second,
5hmC is deaminated by AID/APOBEC to form 5-hydro-
xymethyl-uracil (Guo et al, 2011b). Consistent with the role
of Tet in converting 5mC into 5hmC in vivo, Tet1 knockout
mouse embryonic stem cells have reduced levels of 5hmC

that is accompanied by a subtle increase in 5mC at a global
level (Dawlaty et al, 2011).

Whether 5hmC functions only as an intermediate in DNA
demethylation is still unclear. Like methylation, 5hmC may
regulate gene expression. In support of this theory, the
conversion of 5mC to 5hmC impairs the binding of the
repressive methyl-binding protein MeCP2 (Valinluck et al,
2004). But what is clear at this time is that 5hmC is found
in vivo in mammalian tissue and may play an important role
in regulating DNA demethylation and gene expression.

In all the mentioned mechanisms of active DNA
demethylation, the BER pathway uses thymine DNA
glycosylase (TDG) to cleave off the modified residueF
thymine, 5-hydroxymethyl-uracil, 5-formyl-cytosine, and
5-carboxy-cytosineFand replace it with a naked cytosine
(Cortellino et al, 2011; He et al, 2011). TDG is essential for
DNA demethylation and is required for normal develop-
ment. Knockout or inactivation of TDG leads to embryonic
lethality in mice. Moreover, these mutant embryos exhibit
hypermethylation, particularly in imprinting genes such
as Igf2 and H19, suggesting that active demethylation by
TDG protects imprinted genes from spontaneous de novo
methylation (Cortellino et al, 2011). Single-strand-selective
monofunctional uracil-DNA glycosylase 1 (SMUG1), an-
other BER enzyme from the same uracil DNA glycosylase
family as TDG, is also found to be involved in DNA
demethylation (Cortellino et al, 2011; Guo et al, 2011a, b). In
summary, active DNA demethylation arises from multiple
pathways involving multiple enzymes and this complexity
has likely contributed to much of the current scientific
debate.

Reading DNA Methylation

Whereas DNA methylation may itself reduce gene expres-
sion by impairing the binding of transcriptional activators,
a second class of proteins with a high affinity for 5mC
inhibits transcription factor binding. DNA methylation is
recognized by three separate families of proteins: the MBD
proteins, the UHRF proteins, and the zinc-finger proteins.
Of these families, the MBD was the first to be identified.
MBD proteins contain a conserved methyl-CpG-binding
domain (MBD) that confers a higher affinity for single
methylated CpG sites (Nan et al, 1993). This family includes
MeCP2, the first identified methyl-binding protein, along
with MBD1, MBD2, MBD3, and MBD4 (Meehan et al, 1989;
Lewis et al, 1992; Hendrich and Bird, 1998). MBDs are more
highly expressed in the brain than in any other tissue, and
many MBDs are important for normal neuronal develop-
ment and function (Amir et al, 1999). Of the MBD family,
MBD3 and MBD4 are unusual. For example, MBD3 is
incapable of directly binding to DNA due to a mutation in
its MBD domain (Hendrich and Bird, 1998). Although
MBD4 binds to DNA normally, it preferentially recognizes
when guanine is mismatched with a thymine, uracil, or 5-
fluorouracil and associates with proteins involved in DNA
mismatch repair (Bellacosa et al, 1999; Hendrich et al, 1999;
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Petronzelli et al, 2000; Millar et al, 2002; Wong et al, 2002).
The remaining members of the MBD family have the ability
to directly bind to methylated DNA and contain a
transcriptional repression domain (TRD) that allows MBD
proteins to bind to a variety of repressor complexes (Nan
et al, 1998; Ng et al, 1999; Sarraf and Stancheva, 2004). In
addition to its role as a transcriptional repressor, MeCP2
appears to have a unique role in the maintenance of DNA
methylation. MeCP2 binds to Dnmt1 via its TRD and can
recruit Dnmt1 to hemimethylated DNA to perform main-
tenance methylation (Kimura and Shiota, 2003). Although
MBDs are the best studied class of methyl-binding proteins,
they are not the only one.

The UHRF (ubiquitin-like, containing PHD and RING
finger domain) proteins, including UHRF1 and UHRF2, are
multidomain proteins that flip out and bind methylated
cytosines via a SET- and RING-associated DNA-binding
domain (Hashimoto et al, 2008, 2009). Unlike most methyl-

binding proteins, the primary function of UHRF proteins is
not to bind to DNA and repress transcription. The UHRF
protein family first binds to Dnmt1 and then targets it to
hemimethylated DNA in order to maintain DNA methyla-
tion, especially during DNA replication (Sharif et al, 2007;
Bostick et al, 2007; Achour et al, 2008). UHRF1 appears to
interact so closely with Dnmt1 that its deletion, like the deletion
of Dnmt1, leads to embryonic lethality (Muto et al, 2002).

The last family of methyl-binding proteins binds to
methylated DNA by a zinc-finger domain and is composed
of Kaiso, ZBTB4, and ZBTB38 (Prokhortchouk et al, 2001;
Filion et al, 2006). Although ZBTB4 and ZBTB38 have
distinct tissue expression patterns, both are highly ex-
pressed in the brain and can bind to a single methylated
CpG. The zinc-finger domain proteins are unusual. Despite
their ability to recognize methylcytosine, both Kaiso and
ZBTB4 have preferential binding for a sequence motif
lacking a methylcytosine (Daniel et al, 2002; Sasai et al,
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2010). Unlike other methyl-binding proteins, Kaiso prefer-
entially binds to two consecutively methylated CpG sites
(Daniel et al, 2002). Yet despite their differences, zinc-finger
domain proteins, similar to the MBD family, repress
transcription in a DNA methylation-dependent manner
(Prokhortchouk et al, 2001; Yoon et al, 2003; Filion et al,
2006; Lopes et al, 2008).

Crosstalk of DNA Methylation and Other
Epigenetic Mechanisms

DNA methylation works with histone modifications and
microRNA (miRNA) to regulate transcription (Figure 3). In
eukaryotes, DNA is associated with histone proteins that
help to package the long strands of DNA into the small
nuclear compartment. Chemical modifications that include
methylation, acetylation, ubiquitination, and phosphoryla-

tion are added to three specific amino acids on the N-
terminal histone tails. These modifications influence not
only how DNA strands are packaged but also their
transcriptional activity. Histone modifications that loosen
DNA association with histones generally provide a permis-
sive environment for transcription, whereas histone mod-
ifications that tightly package DNA and histones repress
gene expression. Dnmts directly interact with enzymes that
regulate histone modifications typically involved in gene
repression (Figure 3). Both Dnmt1 and Dnmt3a are known
to bind to the histone methyltransferase SUV39H1 that
restricts gene expression by methylation on H3K9 (Fuks
et al, 2003). Furthermore, Dnmt1 and Dnmt3b can both
bind to histone deacetylases that remove acetylation from
histones to make DNA pack more tightly and restrict access
for transcription (Fuks et al, 2000; Geiman et al, 2004). In
general, Dnmts cooperate with histone-modifying enzymes
involved in adding and/or stripping histone markers in
order to impose a repressive state on a gene region.

Histone modifications can also influence the DNA
methylation pattern (Figure 3). Dnmt3L binds to H3 histone
tails and recruits Dnmt3a and Dnmt3b to methylate DNA
(Ooi et al, 2007). The direct binding of Dnmt3a to the H3
histone tail, sometimes facilitated by H3K36 trimethylation,
a repressive histone mark, also stimulates its methyltrans-
ferase activity (Dhayalan et al, 2010; Li et al, 2011a).
However, the presence of the active histone modification
H3K4 trimethylation (H3K4me3) impairs the binding of
Dnmt3a, Dnmt3b, and Dnmt3L to H3 histone tails and
prevents methylation (Ooi et al, 2007; Zhang et al, 2010).
CpG islands contain particularly high levels of H3K4me3

(Mikkelsen et al, 2007). Cfp1 is a component of the H3K4
methyltransferase complex that targets unmethylated CpG
sites often found at murine CpG islands and may play a role
in maintaining their hypomethylation (Lee and Skalnik,
2005; Thomson et al, 2010). Little is known regarding how
the DNA demethylation machinery interacts with histone
modifications, yet there is still evidence to suggest that they
cooperate. For instance, elevated histone acetylation can
trigger DNA demethylation (Cervoni and Szyf, 2001;
D’Alessio et al, 2007). Tet1 contains a DNA-binding motif
similar to Ctf1, suggesting that both proteins target similar
sites, in this case CpG islands, to maintain DNA demethyla-
tion (Tahiliani et al, 2009). Although a direct connection
between the two has yet to been shown, Tet1 does indeed
localize to CpG islands and its depletion results in an
increase in methylation within those CpG islands in mouse
embryonic stem cell studies (Ficz et al, 2011; Wu and
Zhang, 2011). Future studies are needed to further probe the
interaction of Tet with histone modifications.

Methyl-binding proteins serve as the strongest link
between DNA methylation and histone modification. Both
the MBDs and the UHRF proteins interact with methylated
DNA and histones to enhance gene repression (Figure 3)
(Nan et al, 1998; Ng et al, 1999; Sarraf and Stancheva, 2004;
Citterio et al, 2004; Karagianni et al, 2008). MeCP2 recruits
histone deacetylases to remove active histone modifications
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and repress gene transcription (Jones et al, 1998; Nan et al,
1998; Fuks et al, 2003). Furthermore, MeCP2 enhances the
repressive chromatin state by recruiting histone methyl-
transferases that add repressive H3K9 methylation (Fuks
et al, 2003). Overall, DNA methylation and histone
modifications work closely together to regulate gene
expression.

Recently, miRNAs have emerged as another important
epigenetic mechanism that influences gene expression.
Precursor miRNA forms a double-stranded RNA connected
by a hairpin loop. Once transported into the cytoplasm
precursor, miRNA is processed by Dicer to generate a 22–23
nucleotide miRNA:miRNA* duplex. Mature miRNAs associ-
ate with a miRNA-induced silencing complex (miRISC) that
can bind to their target mRNA and repress gene expression
by inhibiting translation or inducing RNA degradation
(Berezikov, 2011). Like other sequences within the genome,
DNA methylation can regulate the expression of miRNAs
(Han et al, 2007; Lujambio et al, 2008). The loss of both
Dnmt1 and Dnmt3b in a colon cancer cell line revealed that
B10% of detected miRNAs are regulated by DNA methyla-
tion (Han et al, 2007). When Dnmts are inhibited, cancer
cells reactivate some miRNAs that are initially silenced by
hypermethylation of their CpG islands (Lujambio et al,
2008). Understood together, these studies demonstrate that
DNA methylation regulates miRNA expression.

Conversely, miRNAs can also regulate histone modifica-
tions and Dnmt expression and, in so doing, regulate DNA
methylation (Benetti et al, 2008; Sinkkonen et al, 2008).
Knockout of Dicer in mouse embryonic stem cells results in
depletion of miRNAs, one of which is miRNA-290, which
indirectly regulates Dnmt3a and Dnmt3b expression (Benetti
et al, 2008; Sinkkonen et al, 2008). This leads to a loss of DNA
methylation and an increase in repressive histone methylation
at H3K9. These studies provided evidence of a bidirectional
influence between miRNA and DNA methylation.

DNA METHYLATION IN THE BRAIN

DNA Methylation in the Developing CNS

The precise temporal regulation of de novo methylation and
demethylation is particularly important for the differentia-
tion and maturation of the mammalian central nervous
system (CNS). Multipotent neural progenitor cells (NPCs)
sequentially undergo neurogenesis and astrogliogenesis
(Qian et al, 2000; Sauvageot and Stiles, 2002). In particular,
the differentiation switch of NPCs from neurogenesis to
astrogliogenesis coincides with DNA methylation and
demethylation events on the glial fibrillary acidic protein
(Gfap) gene promoter region (Teter et al, 1994). Early in
neurogenesis at E11.5, DNA methylation of the Gfap
promoter represses its expression (Teter et al, 1996;
Takizawa et al, 2001). The continual expression of Dnmt1
in NPCs has been found to be important for the maintenance
of the methylation pattern on the Gfap promoter through
subsequent cell divisions (Fan et al, 2005). Interestingly,

neurogenesis from E11.5 to E14.5 is the only time during
neural development that Dnmt3b is strongly expressed
before declining to nearly undetectable levels in the CNS
(Fan et al, 2005). At E14.5, the Gfap promoter undergoes
DNA demethylation to coincide with the differentiation of
the astrocytic lineage (Teter et al, 1996). As development
further progresses, the decline of Dnmt3b and the peak
expression of Dnmt3a at 3 weeks postnatally coincide with
remethylation and reduced transcription of the Gfap
promoter (Fan et al, 2005; Nguyen et al, 2007). The
coordinated expression of Dnmts and their ability to regulate
the methylation pattern of the Gfap promoter organize and
regulate neuronal development.

The importance of these coordinated events is highlighted
by conditional knockout models of Dnmts during neural
development (Fan et al, 2001, 2005; Golshani et al, 2005;
Nguyen et al, 2007; Hutnick et al, 2009; Feng et al, 2010).
Conditional knockout of Dnmt1 between E8.5 and E13.5, a
time period that coincides with neurogenesis, leads to
hypomethylation of differentiating neurons and demethyla-
tion of the Gfap promoter in neural precursor cells, thus
accelerating astrogliosis (Fan et al, 2001, 2005). Hypomethy-
lated neurons are characterized by multiple maturation
defects including dendritic arborization and impaired neuro-
nal excitability (Fan et al, 2001; Golshani et al, 2005; Hutnick
et al, 2009). These results are consistent with the conclusion
that Dnmt1 has a critical role in neuronal differentiation and
in maintaining the methylation of the Gfap promoter.
Furthermore, these results suggest that DNA methylation is
essential for neuronal maturation. If Dnmt3a is knocked out
instead in the neural precursor cells, the majority of cortical
neurons develop normally (Nguyen et al, 2007). In this case,
the Gfap promoter that is normally remethylated in postnatal
astrocytes remains hypomethylated in B50% of cortical
tissue, likely corresponding to the glial population (Nguyen
et al, 2007). This is consistent with the idea that Dnmt3a is
not required during differentiation or maturation by the
majority of cortical neurons. Together, the knockout data
confirm that precise regulation of DNA methylation is
essential for differentiation and maturation of the CNS.

Like Dnmts, methyl-binding proteins are expressed in
embryonic stem cells and in neural precursors, but unlike
Dnmts their expression has little effect on neuronal or glial
differentiation (Kishi and Macklis, 2004; Martin Caballero
et al, 2009). Of the MBD proteins, MeCP2 is the best studied
in the CNS because its mutation results in Rett Syndrome,
one of the most common forms of mental retardation in
females (Amir et al, 1999). During development, MeCP2 is
first expressed in the brainstem and thalamus, the most
ancient regions of the brain, followed by a rostral progression
of expression (LaSalle et al, 2001; Shahbazian et al, 2002).
Like other methyl-binding proteins, MeCP2 associates with a
variety of transcriptional repressors, including Dnmt1, and
influences gene expression (Nan et al, 1998; Ng et al, 1999;
Kimura and Shiota, 2003; Sarraf and Stancheva, 2004). Neural
activity leads to phosphorylation of MeCP2, altering its
ability to bind gene promoters and silence gene expression
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(Zhou et al, 2006; Tao et al, 2009). MeCP2 is required for
normal neuronal maturation and its loss or the loss of its
ability to be phosphorylated results in aberrant dendritic
arborization, synaptic function, and plasticity (Chen et al,
2001; Moretti et al, 2006; Asaka et al, 2006; Nelson et al, 2006;
Cohen et al, 2011; Li et al, 2011b).

At the conclusion of neural development, the brain
primarily consists of postmitotic neurons and glial cells
with little proliferation potential. Although the expression
of Dnmts normally declines in terminally differentiated
cells, the brain appears to be an exception. Both Dnmt1 and
Dnmt3a are expressed by postmitotic neurons, whereas
Dnmt3b expression is either low or virtually undetectable
(Goto et al, 1994; Inano et al, 2000; Fan et al, 2005). This
surprising discovery led researchers to investigate the role
of active DNA methylation in postmitotic neurons of the
adult brain.

DNA Methylation in the Adult Brain

To date, the majority of the DNA methylation mechanism
has been characterized in embryonic stem cells. Although
this in vitro model may predict the function of DNA
methylation in a dividing cell, embryonic stem cells are an
inadequate model for studying DNA methylation in a
postmitotic cell. The fact that Dnmts are required for
normal neuronal differentiation and maturation hinders the
study of DNA methylation solely in postmitotic neurons.
Despite these limitations, two models have emerged to
study DNA methylation in postmitotic neurons.

The first model utilizes pharmacological inhibitors such
as 5-aza-20-deoxycytadine, zebularine, or RG108 injected
into the brain to impair Dnmt activity (Levenson et al, 2006;
Miller and Sweatt, 2007; Miller et al, 2010). Although
pharmalogical inhibition of Dnmts has the advantage of
inhibiting DNA methylation at the designated time point,
the mechanism of action of Dnmt inhibitors in postmitotic
neurons is still debated. Nucleoside inhibitors such as 5-
aza-20-deoxycytadine and zebularine must be first incorpo-
rated into DNA in order to inhibit Dnmts (Creusot et al,
1982). Once incorporated into the DNA, the nucleoside
inhibitors trap Dnmts on the chromosome, which can lead
to substantial cellular toxicity (Jüttermann et al, 1994; Zhou
et al, 2002). Although it is possible that the BER pathway
may be the source of nucleoside incorporation, it is still
unclear how nucleoside inhibitors are incorporated into the
DNA of a nondividing cell, like a postmitotic neuron.
Because of the concerns surrounding the use of nucleoside
inhibitors, new-generation Dnmt inhibitors, which include
RG108, have been developed. After the discovery of the
structure of the catalytic domain of Dnmt1, RG108 was
identified in an in silico screen as a small molecule that
could inhibit Dnmt1 without being incorporated into the
DNA (Brueckner et al, 2005; Stresemann et al, 2006). RG108
has emerged as a promising Dnmt1 inhibitor with less
cytotoxicity. In cell-free assays, RG108 is capable of
impairing Dnmts with catalytic domains similar to Dnmt1.

Although Dnmt3a and Dnmt3b share a highly conserved
catalytic domain to Dnmt1, it is still unclear whether RG108
inhibits these methyltransferases (Brueckner et al, 2005).

To alleviate concerns of off-target effects and incomplete
Dnmt inhibition, a second experimental model has
emerged. In this model, Dnmts are conditionally knocked
out using the cre/loxP system, with cre expressed by a
brain-specific promoter (Fan et al, 2001; Golshani et al,
2005; Nguyen et al, 2007; Hutnick et al, 2009; Feng et al,
2010). Unlike pharmacological inhibition, this second
method allows investigators to study the role of a specific
Dnmt in subpopulations of neurons. Dnmts are required for
normal neuronal differentiation. Therefore, to study the role
of Dnmts in the adult brain, cre must be expressed by
postmitotic brain-specific promoters such as CamKIIa (Fan
et al, 2001; Golshani et al, 2005; Nguyen et al, 2007; Hutnick
et al, 2009; Feng et al, 2010).

In postmitotic neurons, Dnmt1 and Dnmt3a appear to
have overlapping roles. Neither knockout of Dnmt1 nor of
Dnmt3a in forebrain postmitotic neurons leads to any
observable change in DNA methylation, gene expression,
synaptic plasticity, or behavior (Feng et al, 2010). However,
double knockouts have reduced DNA methylation that leads
to deficits in synaptic plasticity in addition to learning and
memory. Although research has yet to tease apart the role of
Dnmt1 vs Dnmt3a in postmitotic neurons, DNA methyla-
tion has repeatedly been shown to play a role in learning
and memory in the adult brain.

When neuronal activity is inhibited during fear con-
ditioning, not only is memory formation prevented but so
are changes in DNA methylation (Lubin et al, 2008). Early
studies demonstrated that in vitro neuronal activity
regulated the expression of Bdnf in an activity-dependent
manner (Martinowich et al, 2003). Neuronal depolarization
demethylates the Bdnf promoter, releasing the MeCP2
repressor complex from the promoter and increasing Bdnf
expression (Martinowich et al, 2003). Persistent activity in
neurons, as occurs during electroconvulsive stimulation or
exercise, leads to active DNA methylation and demethyla-
tion across several genes within the brain. However,
alterations in DNA methylation do not always correlate
with the alterations in gene expression observed after
heightened activity (Guo et al, 2011a). Hence, although both
DNA methylation and demethylation are altered by
neuronal activity, DNA methylation functions alongside
other regulatory proteins and epigenetic mechanisms that
determine gene expression.

Another class of proteins that work with DNA methyla-
tion to regulate gene expression in the CNS is the class of
methyl-binding proteins. Methyl-binding proteins are con-
tinually expressed in the adult CNS and often act as
repressors that recognize and bind to methylated cytosines
(Nan et al, 1998; Ng et al, 1999; Sarraf and Stancheva, 2004).
Hence, when methylation is removed as a result of neuronal
activity, it is not surprising that MBDs are often released
from promoters (Martinowich et al, 2003). However, the
role of methyl-binding proteins is not this simple. Some
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MBDs like MeCP2 undergo posttranslational modifications
that alter their ability to bind to DNA (Zhou et al, 2006; Tao
et al, 2009). Phosphorylation of MeCP2 is induced by
neuronal activity and results in altered gene expression.
When phosphorylation of MeCP2 is inhibited, synapse
formation, synaptic plasticity, and learning and memory
behavior are all affected (Cohen et al, 2011; Li et al,
2011a, b). As phosphorylation is normally a short-term
modification, activity-dependent phosphorylation may tem-
porarily release MeCP2 from promoters, making the gene
sequence accessible for demethylation. On the other hand,
DNA methylation and demethylation may be responsible
for long-term changes in gene expression that regulate
synaptic plasticity as well as learning and memory.

DNA Methylation in the Etiology of Neurological
and Psychiatric Disorders

The pattern of DNA methylation established during
development can be modulated by neural activity in order
to encode learning and memory. When the mechanisms that
establish and recognize the DNA methylation pattern are
dysfunctional, problems with learning and memory fre-
quently result. One of the most common forms of mental
retardation, Rett Syndrome, is frequently caused by a
mutation to the methyl-binding protein MeCP2 (Amir et al,
1999). The onset of symptoms at 6–18 months of age
coincides with a time in early development when sensory
experience is driving dendritic pruning and shaping
connections in the brain (Samaco and Neul, 2011).
Although MeCP2 is expressed by the majority of cells, it is
particularly important for normal neuronal function. In
mice, loss of MeCP2 in neurons is sufficient to recapitulate
the majority of Rett symptoms (Chen et al, 2001; Guy et al,
2001). The phenotype of MeCP2 mutant mice can be
reversed by restoration of the MeCP2 gene in postmitotic
neurons (Luikenhuis et al, 2004; Giacometti et al, 2007; Guy
et al, 2007). As previously mentioned, MeCP2 is regulated
by neuronal activity and in turn regulates the expression of
BDNF, which has enhanced expression following depolar-
ization (Martinowich et al, 2003). The overexpression of
BDNF in postmitotic neurons of MeCP2 mutant mice
ameliorates their phenotype, suggesting that MeCP2 is
critical for regulating the expression of genes like BDNF that
are regulated by neuronal activity and essential for normal
cognitive function (Chang et al, 2006). The role of MeCP2 in
Rett Syndrome will be further discussed in later chapters.

One extremely rare neurodegenerative disease illustrates
the importance of proper DNMT activity in the adult brain.
Patients with hereditary sensory and autonomic neuropathy
type 1 (HSAN1) develop dementia and hearing loss in
adulthood that result from an autosomal-dominant muta-
tion in the N-terminal regulatory domain of DNMT1 (Klein
et al, 2011). This mutation results in misfolding, impaired
nuclear localization, and early degradation of DNMT1.
However, the mutation does not affect the targeting of
DNMT1 to the replication foci during cellular replication,

but the DNMT1 association with heterochromatin beyond
S phase is disrupted. This association may affect the
maintenance of DNA methylation within these regions.
Although there is only a modest 8% reduction of global
DNA methylation level, neurodegeneration does result. The
involvement of DNMT1 in the pathogenic mechanism of
HSAN1 supports the necessity of DNMT1 in the adult brain.

Improper methylation of a single gene or a single allele
can have drastic consequences within the brain. Fragile X
Syndrome is caused by abnormal methylation of a
trinucleotide repeat expansion in the FMR1 gene on the X
chromosome and is a common form of mental retardation
(Verkerk et al, 1991; Turner et al, 1996). The hypermethyla-
tion in the repeat expansion of FMR1 results in transcrip-
tional silencing (Devys et al, 1993). Translation of the FMR1
gene is regulated by neuronal activity (Weiler et al, 1997)
and its protein product, FMRP, is involved in protein
synthesis at the synapses following depolarization (for
review, see Fatemi and Folsom, 2011). Similarly, improper
methylation of a single imprinted allele, found in some
disorders such as Prader–Willi Syndrome and Angelman
Syndrome, can cause significant mental impairments (for
review, see Buiting, 2010). As incorrect expression or loss of
function of a single gene can have a dramatic effect in the
brain, it is important to understand the mechanism of how
DNA methylation affects gene expression.

DNA methylation can also be altered by repeated
modulation of the microenvironment of the brain. In the
case of recurrent seizures this microenvironment is
repeatedly subject to unusual, synchronized neuronal
activity. One way to mimic this unusual neural activity is
by electric convulsive stimulation, which was found to
result in genome-wide changes in the DNA methylation
pattern (Ma et al, 2009; Guo et al, 2011a). Similarly,
repeated drug usage modulates neuronal function as in the
case of cocaine. Cocaine usage modulates Dnmt3a expres-
sion within the nucleus accumbens and enhances spine
formation (LaPlant et al, 2010). Also, repeated cocaine
usage increases MeCP2 that, in turn, increases Bdnf
expression (Im et al, 2010). Sometimes, drug exposure, like
neural activity, can add posttranslational modifications to
components of the methylation machinery such as MeCP2
(Deng et al, 2010; Hutchinson et al, 2012).

Although DNA methylation is clearly altered in the above
disorders stemming from mutations, inappropriate methy-
lation, or repeated modulation of the microenvironment,
the role of DNA methylation in most psychiatric disorders
is less clear. Yet, there is mounting evidence that altered
patterns of DNA methylation are associated with many
psychiatric disorders. For example, early-life stress in the
form of maternal neglect was sufficient to alter DNA
methylation in the brain of a rodent model (Weaver et al,
2004). Maternal neglect increased methylation within the
promoter of the glucocorticoid receptor, thus reducing its
expression. Surprisingly, this alteration in the DNA
methylation pattern was retained into adulthood, leading
to a heightened stress response. Similarly, in humans,
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childhood abuse results in increased methylation of the
promoter for the glucocorticoid receptor and a decrease in
its expression, recapitulating the rodent model (McGowan
et al, 2009). Furthermore, altered patterns of DNA
methylation are observed in psychiatric patients diagnosed
with schizophrenia and bipolar disorder (Mill et al, 2008).

FUTURE DIRECTIONS AND CLINICAL
IMPLICATIONS

DNA methylation varies not only between tissues but also
between brain regions, between gray matter and white
matter, and possibly even between cells (Ladd-Acosta et al,
2007; Ghosh et al, 2010). Although current technology limits
our ability to distinguish cell-specific methylation patterns,
the advent of next-generation DNA sequencing has provided
powerful tools to examine the genome-wide DNA methyla-
tion pattern with single-nucleotide resolution (Meissner
et al, 2008; Lister et al, 2009; Popp et al, 2010). As technology
improves, the cost of performing sequencing analysis will
decline, thus making the technology more accessible. Recent
technical developments have allowed for genome-wide DNA
methylation analysis to be performed even with a sample
amount as low as 150 ng (Popp et al, 2010). Aberrant DNA
methylation patterns are observed in a wide variety of
psychiatric and neurological illnesses. With declining costs
and the ability to perform genome-wide methylation analysis
on limited tissue quantities, it will soon be possible to map-
out genome-wide DNA methylation patterns from distinct
brain regions from patients with neurological and psychia-
tric disorders. The analysis of neural tissue from psychiatric
patients will lead to new insights into the etiology of
psychiatric illness and open up new avenues of drug
discovery and targeted therapies.

Although current protocols enable scientists to precisely
quantify DNA methylation at single-nucleotide resolution
using progressively smaller tissue quantities, many of the
most commonly used methods for profiling and quantifica-
tion of DNA methylation, such as bisulfite sequencing and
methylation-sensitive enzyme-based assays, are unable to
distinguish between 5hmC and 5mC (Tahiliani et al, 2009;
Huang et al, 2010). A few protocols are capable of
distinguishing 5hmC from 5mC in the genome: CpG end-
labeling followed by thin-layer chromatography (Tahiliani
et al, 2009) and high-performance liquid chromatography
(HPLC) with either UV detection (Liutkeviciute et al, 2009)
or tandem mass spectrometry (Globisch et al, 2010; Le et al,
2011). Hydroxymethylated DNA can be enriched using
antibodies that bind specifically to 5hmC or by biotinylation
of modified 5hmC and precipitated sequences can be
identified using microarray chips or by DNA sequencing
(Szwagierczak et al, 2010; Ficz et al, 2011; Jin et al, 2011;
Pastor et al, 2011; Wu and Zhang, 2011). Although these
methods can quantify 5hmC and identify DNA sequences
with which it is associated, single base-pair resolution has
not been attained. In order to clarify the genomic

distribution and the epigenetic role of 5hmC in the brain,
a locus-specific method of identifying 5hmC will need to be
developed.

As other high-throughput techniques, including RNA and
chromatin immunoprecipitation (ChIP) sequencing, be-
come more accessible to researchers, there is a growing
need to integrate high-throughput data. Currently, DNA
methylation, histone modification, and miRNA are studied
in relative isolation. In order to fully understand how gene
expression is regulated within the nervous system, future
research must consider the epigenome as a whole. By
dissecting the biological mechanisms that mediate crosstalk
among these biological mechanisms and integrating high-
throughput data, we can begin to study the epigenome as a
whole. Finally, for a complete understanding of how the
epigenome regulates gene expression, future research will
have to uncover the biological mechanisms that mediate
activity-dependent changes in the epigenomic landscape of
the mammalian brain.
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