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Abstract

X chromosome inactivation (XCI) is a dosage compensation mechanism essential for embryonic development and cell
physiology. Human embryonic stem cells (hESCs) derived from inner cell mass (ICM) of blastocyst stage embryos have been
used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at
intermediate passages have shown three possible states of XCI; 1) cells in a pre-XCI state, 2) cells that already exhibit XCI, or
3) cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines
between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that
three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI
and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed
XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also
found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the
pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in
vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in
hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs.
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Introduction

Human embryonic stem cells (hESCs) are an invaluable tool for

regenerative medicine and a model for early human embryogen-

esis [1]. Numerous studies in the past ten years have described the

capacity of hESCs to differentiate into specialized cells from the

three germ layers [2]. In certain instances, in vitro differentiated

hESCs can be integrated and become functional in transplantation

experiments [3,4]. Due to the wide applications of hESCs, there

have been increasing demands for more newly derived hESC lines.

This interest allows comparison of different properties among

various hESC lines and can potentially create a gold standard for

the characterization of hESC lines. Therefore, efforts have been

made to generate gene expression and epigenetic profiles for

hESCs [5,6,7,8,9]. Although it seems that the gene expression

profile is quite consistent for all hESC lines, the epigenetic status

varies significantly [6,10]. For example, XIST gene expression

varies among different hESC lines and even within the same cell

line [5,11,12,13].

In mice, Xist is known to play a major role in X chromosome

inactivation (XCI) during female mammalian embryogenesis. In

this process, genetic and epigenetic events, beginning with

expression of Xist, allow equal expression from the X chromosome

in male and female cells. In the mouse model system, XCI occurs

in two waves during embryogenesis. At the two-cell stage, the

imprinted paternal X chromosome is exclusively inactivated.

During blastocyst formation, cells in the inner cell mass (ICM)

reactivate the paternal X chromosome whereas the trophectoderm

and primitive endoderm retain their imprinted XCI. Upon

differentiation, the second wave of XCI occurs in a random

fashion; thus each somatic cell will possess either maternal or

paternal active X chromosome (reviewed in ref. [14]). Further-

more, it was shown that mouse ESCs (mESCs) and induced

pluripotent stem cells (iPSCs) recapitulate random XCI upon

differentiation [15,16]. Due to prominent developmental differ-

ences between mouse and human, XCI patterns between the two

species are not well conserved. Indeed, both random and skewed

XCI patterns are observed in human extra-embryonic tissue

(placenta), but not mouse extra-embryonic tissue, which show

exclusive paternal X chromosome inactivation [17]. Therefore, an

assessment of the XCI during early human embryogenesis is still

needed.

A recent study in pre-implantation human embryos reported

that XIST transcript accumulation on the X chromosome is

initiated in the eight-cell stage embryo with full establishment of

XIST clouds in the blastocyst stage [18]. However, the identity of

the cells showing XIST accumulation is not obvious due to three

distinct cell populations found in the blastocyst stage embryos,

namely trophectoderm, primitive endoderm and ICM. Further-

more, the XCI pattern (skewed or random) is still unclear.
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Questions regarding the XCI status of the ICM and the pattern of

XCI in human pre-implantation embryos still remain to be

resolved.

Since differentiation of hESCs can be used to model human

embryogenesis in vitro, they are examined for the initiation and

maintenance of XCI. Several research groups including ours

reported that XCI in hESCs, unlike their rodent counterparts, is

unstable and prone to changes during culture [5,10,13,19,20].

Recent in depth XCI studies with several hESC lines described

three different states of XCI in these cells [13,19,20] (reviewed by

Dvash and Fan, 2009 [21]). The first or ‘‘naı̈ve’’ state refers to

undifferentiated hESCs that possess two active X chromosomes.

However, upon differentiation, they acquire one inactivated X

chromosome. The second or intermediate state refers to hESCs

that show XCI markers in both undifferentiated and differenti-

ated states. The third state describes hESCs that do not show any

XCI markers in both undifferentiated and differentiated states.

Interestingly, it has been suggested that hESCs progress gradually

during culture from the first ‘‘naı̈ve’’ state, to the second stage

exhibiting XCI, then to the third state where all XCI marks are

irreversibly lost [19] [21]. Furthermore, there is a correlation

between the inability to express XCI marks and biallelic

methylation pattern on the XIST promoter [13]. Importantly,

all the above mentioned studies used mid to late passage hESCs

(,p20–p100), that have been exposed to long term culture

effects.

It is therefore better to evaluate the status of XCI in early

passages of undifferentiated hESCs that have been minimally

exposed to culture effects. Hereby we report the status of XCI in

ten lines of female hESC at the earliest passages available. Our

results indicate that the three distinct states of XCI can be

observed even in minimally passaged hESCs. In addition, we

investigated the pattern of XCI in two cell lines- one showed

random XCI reminiscent of mESCs, while the other showed non-

random XCI. Consistently, we found that the methylation pattern

of the XIST promoter is tightly associated with silencing of XIST

expression in early passages of female hESCs.

Results

XIST expression analysis in CSES cell lines at early
passages

Recent studies have identified three distinct states of XCI in a

variety of female hESCs [12,13,19]. These studies have also

implied that these three XCI states are the consequence of long

term culture conditions. We hypothesized that by using early

passage hESCs, which have minimal exposure to culture effects,

we may be able to better evaluate XCI status in the derivation of

hESCs. For this purpose, we used newly derived CSES cell lines

[22] at the earliest available stage such as passage five (p5) for some

of the cell lines to study XCI.

Relative expression levels of XIST were assessed in all ten female

cell lines (CSES1, 2, 3, 5, 6, 7, 8, 10, 11 and 14) by using real-time

PCR analysis. In the undifferentiated state, four of the examined

cell lines (CSES 1, 8, 10 and 11) expressed XIST while all the other

lines did not show any XIST expression (Fig 1A). We then asked

whether XIST expression can be induced in hESCs that do not

express XIST upon teratoma differentiation. Consistent with

previous findings [13] all cell lines that expressed XIST in the

undifferentiated state were able to maintain and even up-regulate

XIST expression upon differentiation. Interestingly, two of the cell

lines (CSES2 and CSES7) that did not express XIST in the

undifferentiated state were able to induce XIST expression upon

differentiation, though at a lower level (Fig 1B). However, four cell

lines (CSES3, CSES5, CSES6 and CSES14) did not express XIST

both at the undifferentiated and differentiated state. These results

clearly demonstrate that three different states of XCI exist in

hESCs even after a short culture period. We conclude that CSES2

and CSES7 cells are in the ‘‘naı̈ve’’ state, showing XIST expression

only upon differentiation; CSES1, 8, 10 and 11 cells are in the

intermediate state, showing XIST expression at the undifferenti-

ated state and further induction upon differentiation; and CSES 3,

5, 6, 14 cells are in the third ‘‘culture affected’’ state, showing no

XIST expression regardless of undifferentiated or differentiated

conditions.

It has been shown that XCI initiation correlates with low levels

of pluripotency related factors in mouse ES cells [23]. To exclude

the possibility that XIST expression in undifferentiated hESCs

occurs due to differentiation in culture, we analyzed pluripotency

gene expression along with XIST expression by using the ABI

human stem cell pluripotency low density array. Delta Ct values

were calculated for each gene compared to the control gene, beta

actin (Fig. 1C, D). Brown-Forsthye test shows that all pluripotency

genes are expressed with small variance between different cell lines

analyzed (p = 0.27) (Fig. 1C), whereas XIST expression varied

significantly (p = 2.2610217) (Fig. 1D). These results were

supported by our observation of simultaneous appearance of

XCI markers and undifferentiated stem cell markers such as

OCT4 by immunostaining (Fig. 2G).

To visualize XCI states at a single cell resolution, we assayed for

XIST RNA coating of the inactive X (Xi) by using FISH analysis

or enrichment of histone 3 lysine 27 tri-methylation (H3K27me3)

by immunocytochemistry [24,25]. Consistent with XIST expres-

sion, cell lines such as CSES1 showed punctate staining for

H3K27me3 on the Xi (Fig. 2A). XIST RNA coating was also

identified on one of the X chromosomes in virtually all of the cells

(Fig. 2D). In contrast, cell lines such as CSES3 lack both

H3K27me3 punctate staining and XIST RNA coating of the Xi

(Fig. 2B, E). Interestingly, CSES3 lacks XCI markers at early

passages (p6) (Fig. 2C, F) and upon long term culture (p31) (Fig. 2B,

E). In addition, these cells lack the capability to induce XCI upon

teratoma formation (Fig 1 B).

Low level of XIST expression as seen in CSES10 (Fig. 1A, D)

can be explained either by uniformly low XIST expression in the

entire cell population or by high expression from a small subset of

cells. In order to distinguish between the two possibilities, we

calculated the percentage of cells exhibiting punctate H3K27me3

staining. Indeed, all cell lines that do not express XIST also do not

show any H3K27me3 punctate staining. However, in interme-

diate state (state II) cells, we observed a significant number of cells

with punctate staining for H3K27me3 (Fig. S1). Therefore, low

level of XIST expression in CSES10 p15 cells correlates with a

lower number of H3K27me3 positive cells, indicating a low

number of XIST expressing cells. Furthermore, all H3K27me3

positive cells were positively stained for OCT4 (data not shown),

which again suggests that XCI can occur in undifferentiated

hESCs.

Finally, we also observed the transition from the XIST + to the

XIST 2 XCI state in subcultures of early passage hESCs. In

CSES8, H3K27me3 punctate staining can be detected at a high

percentage in p8 (n = 257, 87%); however the number of

positively-stained cells was significantly reduced by p17 (n = 403,

48%). In parallel, XIST mRNA expression was dramatically

reduced in p17 CSES8 hESCs (Fig 2G).

Skewed versus random XCI pattern in CSES cell lines
During mouse embryogenesis, imprinted XCI of the paternal X

chromosome occurs prior to the blastocyst formation whereas

XCI in Early Passages of hESCs
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random XCI is initiated upon differentiation. However, previously

we observed non-random XCI in later passages of female hESC

lines [13]. Given that the XCI states seems to be affected by

culture and that culture pressure could result in clonal selection,

we were curious to see whether XCI is random or skewed in early

passages of hESCs.

Figure 1. XIST expression in CSES cell lines. (A) XIST relative expression levels in CSES undifferentiated cells. (B) XIST relative expression levels in
teratomas derived from CSES cells. (C) Pluripotency gene expression by Delta Ct in CSES cell lines in different passages as well as in H1 (male) cell line.
(D) XIST expression by Delta Ct in all CSES cell lines analyzed compared to H1 (male) cell line. Significant values (p,0.01) are marked by asterisks.
doi:10.1371/journal.pone.0011330.g001

XCI in Early Passages of hESCs
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We chose to analyze the pattern of XCI in two cell lines, CSES1

and CSES8, because both showed XCI markers. In order to verify

the parental origin of the active X chromosome, we used maternal

DNA that was extracted from granulosa cells, which are somatic

cells that surround the oocyte during maturation. These cells are

normally removed at the time of egg retrieval during IVF

procedure in order to expose the oocyte surface for fertilization.

Frozen granulosa cells for CSES1 and CSES8 were used for DNA

extraction. Following DNA amplification these samples were

hybridized to Affymetrix SNP array (250k Sty) side by side with

the corresponding hESC DNA. The results from this analysis

enabled us to choose SNPs within X-linked genes that were

identified as heterozygous in the hESC lines and homozygous in

the maternal DNA.

In order to verify the maternity of the granulosa DNA sample

with the corresponding hESC sample, we performed identical by

state (IBS) analysis to show that our samples are genetically

related. For instance, comparison of CSES1 and its corresponding

maternal sample showed that in 71.7% of the SNPs both alleles

are shared (IBS = 2) and in 28% of the SNPs one of the alleles is

shared (IBS = 1). This indicates that 99.7% of SNPs show at least

one allele shared between the samples. Overall 85.7% of SNPs are

shared between CSES1 and its maternal sample. This indicates

close genetic relationship between the two samples (Fig. S2). In

order to perform SNP expression analysis, we selected genes that

show moderate to high expression in undifferentiated hESCs.

Consequently, we analyzed the expression of seven SNPs for

CSES1 and nine SNPs for CSES8 along the X chromosome

(Table 1, 2, Fig. S3, S4).

Our results indicate discrepancies between the two hESC lines

with regard to the pattern of XCI. In the CSES8 cell line at both

p5 and p14, we consistently observed bi-allelic expression of X-

Figure 2. Stability of XCI markers in CSES lines. (A) CSES1 shows positive punctate staining for H3K27me3 (indicated by the arrow heads).
CSES3 cells do not show punctate staining pattern for H3K27me3 in (B) late or (C) early passages. (D) Shown is XIST RNA coating of Xi by FISH in CSES1
cell line (indicated by the arrow heads). (E) CSES3 lack XIST RNA coating of Xi as indicated by FISH analysis. (F) CSES3 is positively stained for OCT4
(green) at p6. (G) CSES8 at p8 shows H3K27me3 punctate staining along with OCT4 staining; however, the relative expression of XIST is reduced in
this cell line at p14. This observation is supported by a decrease in the cell population with H3K27me3 punctae in p17 (48% of the cells).
doi:10.1371/journal.pone.0011330.g002

XCI in Early Passages of hESCs
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linked genes, indicating that random XCI has occurred. On the

other hand, CSES1 at p5 showed preferential expression of the

paternal allele suggesting skewed XCI with six out seven X-linked

genes exhibiting mono-allelic expression from the paternal X.

Theoretically, the probability of having maternal or paternal allele

expressed per SNP is 50%. According to binomial distribution

B(x = 6; n = 7, p = 0.5), the cumulative probability of getting as

many as six out of seven SNPs with paternal expression is 0.0625.

Since this probability is very small, it argues against the hypothesis

of random XCI in this case. Therefore, the preferential expression

from the paternal allele is due to skewed maternal X inactivation.

Moreover, upon prolonged culture of CSES1 cell line, we observe

partial reactivation of the second allele that coincides with the loss

of XIST expression at later passages. For example, rs41537046

expressed only the paternal allele (A) at p5, whereas both paternal

and maternal alleles are expressed (A/G) by p14 (Table 1 and Fig.

S3). This is consistent with our previous observation that loss of

XIST expression would lead to partial reactivation of a portion of

previously silenced genes in Xi [13].

XIST promoter methylation status correlates with the
three different states of XCI in hESCs

The variability of XCI status in early passages may indicate

epigenetic modifications of the XIST promoter that occur either

prior or subsequent to the hESCs derivation process. Indeed, it

was previously suggested that XIST promoter methylation pattern

is correlated with the XCI status of the cells [13,21]. Consistently,

our analysis demonstrates that CSES1 at p11 expresses XCI

markers and have ,50% methylation at the XIST promoter

(Fig. 3). This result is consistent with the observation that one of

the XIST alleles in these cells expresses XIST in the undifferen-

tiated state as well as upon teratomas differentiation. In addition,

the XIST promoter shows ,90% methylation in later passages of

CSES8 (p28) consistent with silencing of both XIST alleles and the

loss of XCI markers upon long-term culture (data not shown). We

also observed 70–96% methylation in the XIST promoter of

CSES3 and CSES5 (Fig. 3), even in early passages (p11 and p12

respectively). This is correlated with the inability of these cell lines

to induce XCI in either undifferentiated state or upon teratomas

differentiation (Fig. 1B). Interestingly, both CSES2 and CSES7,

which exhibit XCI only upon differentiation, also showed 80–87%

methylation of the XIST promoter in early passages (p12 and p10

respectively) (Fig. 1B and Fig. S5). This observation suggests that

DNA methylation is also involved in repression of XIST gene

expression in the pre-XCI state.

Discussion

In this study, we attempted to minimize the in vitro culture

effects by using hESCs at the earliest available time. It has been

shown that long term culture can contribute to the variation in

XCI status of hESCs [13,19,20]. We found that early passage cell

lines already exhibit various XCI states similar to cell lines after

prolonged culture. While it is formally possible that culture

variations in the first few weeks of hESC derivation and

expansion may yield XCI variation, we cannot rule out the

alternative possibility that XCI variations may reflect innate

Table 1. Genomic SNP genotyping and polymorphic cDNA analysis of CSES1.

SNP ID Band
chromosome
location Gene name

CSES1
genotype

Granulosa
genotype

CSES1 p5
expression

CSES1 p14
expression

rs5914796 Xp11.21 56807583 DKFZp686L07201 A/T T/T A A

rs4828327 Xq21.1 84236784 SATL1 A/C C/C A -

rs6620161 Xq21.33 96027150 DIHPA2 A/G G/G A/G A/G

rs2428212 Xq24 118985598 UPF3B A/G G/G A A

rs6641482 Xq28 147887801 AFF2 G/A A/A G -

rs41537046 Xq26.2 132470683 GPC4 A/G G/G A A/G

rs895744 Xq28 153998985 BRCC3 G/T T/T G -

doi:10.1371/journal.pone.0011330.t001

Table 2. Genomic SNP genotyping and polymorphic cDNA analysis of CSES8.

SNP ID Band
Chromosome
location Gene name

CSES8
genotype

Granulosa
genotype

CSES8 p5
expression

CSES8 p14
expression

rs3747276 Xp22.11 21985464 SMS A/G G/G A/G A/G

rs6628886 Xp21.1 34654777 TMEM47 A/G G/G A/G A/G

rs6625472 Xq13.1 68739542 TMEM28 A/G G/G A/G A/G

rs479640 Xq13.2 73668829 SLC16A2 C/T T/T C/T C/T

rs717689 Xq21.1 77379935 PGK1 A/G G/G A/G A/G

rs1204399 Xq22.1 99886830 TSPAN6 A/G G/G A/G A/G

rs2294504 Xq23 109552667 AMMECR1 C/T T/T C/T C/T

rs42890 Xq24 119578513 LAPM2 T/G G/G T/G T/G

rs5977910 Xq26.2 132901293 GPC3 T/G T/T T/G T/G

doi:10.1371/journal.pone.0011330.t002
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heterogeneity of the original cells found in the ICM of the human

embryo. This hypothesis is supported by a study on cultured

mouse ICM cells reporting that these cells can undertake different

paths- such as differentiation to epiblast, reversion into pre-

blastocyst embryonic cell stage or selective expansion of a distinct

subpopulation- and therefore differ in their XCI status [30]. Of

note, mouse EpiSCs exhibit XCI as they are derived from a later

stage of mouse embryogenesis and resemble the morphology and

the expression patterns of the hESCs [28,29,32]. Thus, it is

formally possible that at the time of the hESCs derivation, some

of ICM cells have already progressed to a more committed state

and already initiate XCI [24], whereas other ICM cells are still at

a pre-XCI stage that eventually give rise of hESCs in the ‘‘naı̈ve’’

pre-XCI state.

Here we show that variations of XCI are already present from

early passage (p5) to later passage (p14) of the same cell line

(CSES8), supporting the notion that XCI is highly affected by

culture conditions [13], even at the earliest stages of culturing.

Very recently, it was demonstrated that derivation of hESCs in

physiological oxygen concentration (5%) allows establishment of

hESC in a naı̈ve pre-XCI state, with two active X chromosome

[31]. Irreversible XCI occurs when the naı̈ve female hESCs are

cultured in atmospheric oxygen concentration (20%) conditions.

This is consistent with the previous notions that female hESCs can

switch from a pre-XCI state to established XCI status upon culture

selection.

Concerning the pattern of XCI in hESCs at the early passages,

our SNP analysis revealed random XCI for one line of hESCs

(CSES8) while skewed XCI for the other cell line (CSES1) with

preferential expression from the paternal X chromosome. Skewed

XCI is known to happen during mouse embryogenesis at the two

cell stage until the blastocyst stage when the inactive paternal X

becomes reactivated. In this case, the inactivation is imprinted and

the paternal X chromosome is inactivated. In hESCs, methylation

specific analysis of a polymorphic tri-nucleotide repeat at the

HUMARA gene show three out of four hESC lines possess skewed

XCI while one has a random pattern of inactivation [33].

Interestingly, this research group also analyzed a triploid (3PN)

hESC line and showed a progression from a random XCI to a

skewed pattern of XCI. Similarly, transition of naı̈ve hESCs,

possessing two active X chromosomes under physiological oxygen

concentrations to atmospheric oxygen concentrations also result in

skewed XCI [31]. We show that in CSES1 cells the maternal X

chromosome is inactivated. Our observations for CSES1 cell line

combined with the observation from Liu et al. [33] and Lengner et

al. [31] suggest that culture selection during hESC culture may

results in skewed XCI as reported [13,31,33].

The mechanism underlying the initiation and loss of XCI

markers in hESCs is largely unknown. It is known that Xist

promoter is 50% methylated in undifferentiated female mESCs

[34]. However, the methylation status of human XIST promoter in

the pre-XCI state is previously unknown. In order to gain some

insight into this mechanism, we analyzed the methylation patterns

of XIST promoter in early passages of hESCs. Cells that show XCI

markers both prior and post differentiation have approximately

50% methylation of the XIST promoter as expected. We also

observe gain of methylation in the XIST promoter region upon

further passages, which is also associated with loss of XIST

expression and other XCI markers in the case of CESE8 hESCs.

Here we show that hypermethylation of the XIST promoter is also

observed in short term culture (CSES3 and CSES5). This

correlates with the inability of these cells to initiate XCI upon

differentiation. Surprisingly, cell lines such as CSES2 and CSES7

were able to initiate XCI upon differentiation but showed relative

high methylation on the XIST promoter in the undifferentiated

state, consistent with reports by Lengner et al. [31] for their hESCs

in the pre-XCI state. The ability of these two CSES cell lines to

initiate XIST expression upon differentiation suggests two

possibilities: (i) there might be an additional XCI state in hESC

where hypermethylation of the XIST promoter is reversed and

consequently XIST transcript is expressed, or (ii) only a minority of

the cells within the teratomas express XIST whereas the majority

of cells do not express XIST.

In this study, we propose that XCI occurs in undifferentiated

hESC in a random manner and the observations of skewed XCI

are probably a result of a clonal selection occurring in hESC

culture. It was recently shown that mouse induced pluripotent cells

(miPSC) recapitulate XCI patterns of mESCs [16]. Therefore,

analysis of human iPSCs may elucidate whether these cells can

reactivate both X chromosomes and maintain their active state in

the undifferentiated state, or whether XCI occur in these cells in

the undifferentiated state as in hESCs. Moreover, previous reports

have demonstrated the involvement of pluripotency factors in the

initiation of XCI in mESCs [23]. Since hESCs and mEpiSCs

seems to represent a more committed derivative of the ICM it is

possible that a different set or levels of transcription factors present

in these cells are responsible for the different patterns of XCI

between mouse and human ESCs.

Figure 3. XIST promoter methylation analysis in CSES cell lines. Schematic of XIST promoter CpG sites and bisulfite sequencing results of the
corresponding CpG sites in the XIST promoter in each cell line. Open circle represents unmethylated CpG site and closed circle represents methylated
CpG site.
doi:10.1371/journal.pone.0011330.g003

XCI in Early Passages of hESCs
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Overall the variability in the status of XCI among the cell lines

indicates either rapid epigenetic culture effect or the potential

heterogeneity of the original ICM cells. It seems that the cells, even

in early passages, tend to undergo XCI and later on lose the XCI

markers. Thus, XCI process is highly affected by culture

conditions and inactivation of one of the X chromosomes may

provide an advantage in the current culture condition. We propose

that a careful re-examination of XCI status in human ICM will

shed light on the status and pattern of XCI in these cells. It is

known that normal XCI is critical in the embryonic development

[35] and inappropriate XCI is involved in different pathologies

such as cancer [36]. Therefore, routine evaluation of XCI status

should be a standard procedure for any pluripotent cells, including

iPSCs, when they are applied to regenerative medicine.

Materials and Methods

Ethic statement
This research was approved by UCLA Embryonic stem cells

research oversight (ESCRO) committee.

Human ESC culture and differentiation
Cedars Sinai Embryonic Stem cell lines (CSES) were derived as

described [22] and were cultured on mouse embryonic fibroblasts

(MEF) in hESC medium [2] supplemented with 30ng/ml bFGF

until cell line establishment. Upon establishment bFGF concen-

tration was reduced to 5ng/ml. Manual passaging method was

applied until a stable cell line was established (normally between

p4 to p8), and thereafter enzymatic transfers were done either by

using Trypsin/EDTA or collagenase type IV [2]. Cells were

allowed to undergo in vivo differentiation by injection of 56106

cells under the kidney capsule of Nude mice. A month after

injection, the mice were euthanized and teratomas were removed

for RNA extraction. The care of the animals was in accordance

with the institutional guidelines, as approved by Cedars Sinai

Medical Center Institutional Animal Care and Use Committee,

according to protocol 2182. In vitro differentiation was carried out

on matrigel coated plates and the cells were cultured in hESC

medium without bFGF supplemented with 2 mM retinoic acid

(Sigma) for seven days.

RNA extraction and real time polymerase chain reaction
analysis

Total RNA was extracted using RNeasy mini kit (Qiagen,

Valencia, CA http://www1.qiagen.com) and was treated with

DNase I as described in the RNeasy mini kit protocol. 1 mg of

DNase treated RNA was subjected to reverse transcription by

iScript cDNA synthesis kit (Bio-Rad, Hercules, CA http://www.

bio-rad.com). cDNA was either subjected to PCR amplification for

SNP analysis as described below or for real-time PCR that was

carried out with Bio-Rad iCycler using IQTM SYBRH green

supermix (Bio-rad) with XIST and GAPDH human specific primers

(see table S1 for primer sequences). Relative XIST gene expression

levels were calculated after they were normalized with expression

levels of GAPDH.

Gene expression analysis by low density arrays
RNA from undifferentiated hESCs were analyzed by a

Taqman� based assay, using the human stem cell pluripotency

array (ABI, foster city,CA). Delta Ct values were obtained by

identifying the number of amplification cycles needed to reach the

common threshold (Ct) value for each gene. Then, these values

were normalized by subtraction of the Ct values obtained for a

control gene (beta-Actin) for the same sample. In order to show

that XIST expression variation among the different cell lines is not

due to differentiation in culture, we performed a Brown-Forsthye

test.

SNP analysis
Genomic DNA from the hESC lines was extracted using

DNeasy kit (Qiagene). Due to low amount of starting cells, DNA

for Granulosa cells was extracted with the same kit and was

subjected to whole genome amplification using REPLI-g mini kit

(Qiagene). DNA from CSES1 (p14), CSES8 (p12) and their

corresponding maternal granulosa cells were hybridized to

Affymetrix 250k Sty SNP array (Affymetrix, Santa Clara, CA

http://Affymmetirx.com). The microarray data have been

deposited in GEO and given the series accession number

GSE2167. SNPs were selected for analysis along the X

chromosome according to the following criteria: the gene is X-

linked and expressed in hESCs in moderate to high levels, and the

SNP is heterozygous in the hESC line and homozygous in the

corresponding maternal DNA. Genotype was validated for the

selected SNPs by direct sequencing (see table S1 for primer

sequences). In order to assess the expression from a specific SNP in

CSES1 and CSES8 hESC lines, we used cDNA that was treated

with DNase I as described above to avoid DNA contamination

and amplified the specific regions. Amplicons were separated using

an ethidium bromide stained 2% agarose gel, followed by gel-

purification (Wizard H SV Gel and PCR clean up system, Promega

http://www.promega.com) and direct sequencing reaction to

identify the expressed allele.

Bisulfite genomic sequencing analysis
Genomic DNA samples for CSES1, 2, 3, 5 and 7 were digested

with BglII overnight and treated the following day with sodium

bisulfite for 15 hours as previously described [37]. Converted

DNA samples were cleaned using WizardH DNA Clean Up Kit

(Promega) and were amplified by a single PCR reaction. PCR

products were cloned into the Topo TA Vector 4.0 (Invitrogen).

Individual colonies were picked for sequencing to identify the

allelic methylation patterns. XIST promoter Bisulfite PCR primers

were designed using the MethPrimer online software http://www.

urogene.org/methprimer/index1.html.

Immunocytochemistry and XIST RNA-FISH analysis
Cells for immunostaining were first fixed with 4% PFA/PBS for

20 minutes at room temperature and washed with PBS. Cells were

then permeabilized by 0.4% Triton-X in TBST for 20 min and

blocked in 10% milk and 1% normal goat serum for 1 hour.

Cover slips were incubated 1 hour at room temperature with

primary antibodies diluted in 3% BSA in TBST [monoclonal

mouse anti-OCT4 (1:20, Santa Cruz) and polyclonal rabbit anti-

H3K27me3 (1:1000, a gift from Yi Zhang, University of North

Carolina, Chapel Hill, NC)]. After being washed three times with

PBS, cover slips were incubated in fluorochrome-conjugated

secondary antibodies for 1 hour at room temperature with

protection from light. Hoechst dye #33342 was used to label cell

nuclei. XIST RNA-FISH was performed as described [38] by

using three 50-mer DNA probes designed from consensus

sequences of map positions 6183-6232, 62234-6283 and 6368-

6417 (accession No. L04961), which are in repeat D of XIST.

Supporting Information

Table S1 Primer sequences.

Found at: doi:10.1371/journal.pone.0011330.s001 (0.05 MB

DOC)
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Figure S1 Percentage of undifferentiated cells positively stained

for H3K27me3. Intermediate state (state II) cells show significant

number of cells with punctate staining for H3K27me3 CSES1 p15

(n = 511, 94%), CSES8 p8 (n = 257, 87%) CSES10 p15 (n = 257,

32%) and CSES11 p12 (n = 655, 84%).

Found at: doi:10.1371/journal.pone.0011330.s002 (4.55 MB TIF)

Figure S2 Identical by state (IBS) analysis for CSES1 and its

granulosa cells. Proportion of IBS = 0, 0.3% (no shared alleles),

IBS = 1, 28% (one shared allele) and IBS = 2, 71.7% (two shared

alleles). Overall, 85.7% of the alleles are shared, clearly indicating

for close genetic relationship between the samples.

Found at: doi:10.1371/journal.pone.0011330.s003 (8.34 MB TIF)

Figure S3 SNP sequences for CSES1 samples. SNP rs6620161

shows biallelic expression in p5 with one of the alleles more

prominently expressed. However, in p14 both alleles are expressed

at the same level. rs41537046 shows monoallelic expression at p5,

but at p14 both of the alleles are already expressed. SNP

rs5914796 shows expression of the paternal allele both at p5 and

p14.

Found at: doi:10.1371/journal.pone.0011330.s004 (9.12 MB TIF)

Figure S4 SNP sequences for CSES8 samples. Representing

SNP sequences for CSES8 cell line. SNPs rs1204399, rs42890 and

rs6625472 all show biallelic expression both at p5 and p14.

Found at: doi:10.1371/journal.pone.0011330.s005 (9.24 MB TIF)

Figure S5 Induction of XCI in CSES upon Retinoic Acid

differentiation. XCI detected by immunostaining for H3K27me3

and pluripotency detected by staining for OCT4 were tested in the

three different classes of CSES cells. In CSES2 and CSES7 (A–D),

representing class I cells, we were able to detect induction of XCI

upon differentiation in CSES2 (A, B) but not for CSES7 (C, D).

CSES3 representing class II cells were not able to induce XCI

upon differentiation (E, F). In CSES8, we were able to detect XCI

markers both in the undifferentiated and differentiated cells (G,

H).

Found at: doi:10.1371/journal.pone.0011330.s006 (9.89 MB TIF)
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