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To examine the roles of epigenetic modulation on hair follicle regeneration, we generated mice with a K14-Cre-
mediated loss of DNA methyltransferase 1 (DNMT1). The mutant shows an uneven epidermal thickness and
alterations in hair follicle size. When formed, hair follicle architecture and differentiation appear normal. Hair
subtypes exist but hair fibers are shorter and thinner. Hair numbers appear normal at birth but gradually
decrease to o50% of control in 1-year-old mice. Sections of old mutant skin show follicles in prolonged telogen
with hyperplastic sebaceous glands. Anagen follicles in mutants exhibit decreased proliferation and increased
apoptosis in matrix transient-amplifying cells. Although K15-positive stem cells in the mutant bulge are
comparable in number to the control, their ability to proliferate and become activated to form a hair germ is
reduced. As mice age, residual DNMT activity declines further, and the probability of successful anagen reentry
decreases, leading to progressive alopecia. Paradoxically, there is increased proliferation in the epidermis,
which also shows aberrant differentiation. These results highlight the importance of DNA methylation in
maintaining stem cell homeostasis during the development and regeneration of ectodermal organs.
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INTRODUCTION
The hair follicle, an organ with robust regenerative capabilities,
undergoes episodic regenerative cycling in adults under normal
physiological conditions. In adult animals, hair follicles cycle
through phases of growth (anagen), regression (catagen), and
quiescence (telogen) (Stenn and Paus, 2001; Schmidt-Ullrich
and Paus, 2005; Cotsarelis, 2006). The architectural organiza-
tion of hair follicles makes it easy to discern the location of hair
stem cells, proliferating transient-amplifying (TA) cells, and
differentiating cells. The length of a hair shaft is proportional to
the duration of anagen. Furthermore, 430,000 hair follicles
grow on each individual, rendering them accessible to
quantitative analyses (Plikus and Chuong, 2008a; Plikus et al.,
2011). These characteristics make the hair an ideal model to

study homeostasis among stem/TA/differentiated cells within the
hair follicle (Blanpain and Fuchs, 2009).

Recently, epigenetic mechanisms involving modifications
of histone tails or DNA have been shown to modulate the
accessibility of genes to transcriptional machinery and
thereby modulate gene activities without having to change
the DNA genomic sequence (Goldberg et al., 2007). We
wondered what roles epigenetic processes may play in the
development and regeneration of hair follicles.

DNA methyltransferase 1 (DNMT1) function has been
studied extensively. In the skin, DNA methylation has a role
in stem cell self-renewal and differentiation (Sen et al., 2010).
These authors showed that DNMT1 is required to maintain
epidermal lineage precursor cells. Upon differentiation, the
promoters of a number of genes involved in epithelial
differentiation were demethylated. The small hairpin RNA-
mediated suppression of DNMT1 reduced the progenitor
pool as the cells differentiated prematurely.

However, the role of DNMT1 has not been studied in the
regenerative cycling of hair follicles, nor in epidermal
homeostasis in vivo. To assess the roles of DNMT1 in
regulating hair filaments and hair follicles during the murine
hair cycle, we crossed a K14-Cre line that expresses Cre
recombinase in epidermal basal cells with a floxed DNMT1
line to excise specific exons of the DNMT1 gene in the mouse
epidermis. This cross created a conditional knockout of
DNMT1 in the K14-expressing epidermis. Here we report the
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skin pathology of these mice and the abnormal stem cell
activity in the epidermis and hairs.

RESULTS
DNMT1 is expressed in the developing skin and cycling hair follicles

Hair placodes begin to form at embryonic day 14.5 (E14.5).
DNMT1 is expressed widely in the epithelium at this stage.
By E16–E18, the epidermis expands to become multilayered
and hair germs and hair pegs form. At these stages, DNMT1 is
enriched in the basal epidermal layer and hair germs/pegs,
but gradually disappears from the spinous, granular, and
stratum corneum layers (Figure 1a). After birth, at postnatal
days 0–9 (P0–P9), DNMT1 is weakly expressed in the
epidermal basal layer and more strongly in the hair matrix
(Figure 1a). In adult anagen hair follicles, DNMT1 is
expressed in the outer root sheath (ORS), inner root sheath,
and matrix, whereas in telogen hair follicles it is mostly
expressed in the hair germ (Figure 1b). A schematic summary
of DNMT expression is shown (Figure 1c).

Generation and characterization of K14-Cre DNMT1fl/fl mice
To investigate the role of DNMT1 in hair development and
cycling, we generated K14-Cre DNMT1fl/fl mice by crossing
K14-Cre mice with DNMT1fl/fl mice (Figure 2a). The genotype
of all offspring demonstrates the presence of the LoxP element
and K14-Cre (Figure 2b). Cre-mediated recombination is detected
in the dissected epidermis containing hair follicles from K14-Cre
DNMT1fl/fl mice. Muscle serves as a negative control. Using
primers P1 and P2 to amplify the floxed allele or P1 and P3 to
amplify the recombined allele after excision, we find a K14-Cre-
mediated specific deletion of DNMT1 in skin epidermis but not
in the muscle (Figure 2c). Many but not all genotypic DNMT1-
floxed mice show obvious phenotypes. However, there is a
good correlation between the level of DNMT1 deletion by
recombination and the level of the observed phenotype.

To further characterize DNMT1 loss in the skin of K14-Cre
DNMT1fl/fl mice, we performed western blot analysis using
anti-DNMT1 antibodies targeted downstream to the excision
site. Mice with clear phenotypes show no detectable DNMT1
protein (Figure 2d, right panel), whereas mice without obvious
phenotypes show some DNMT1 expression, although less
than wild type (WT; Figure 2d, left and middle panels). The
DNMT1 deletion is further demonstrated by immunohisto-
chemistry (IHC), which shows a reduction, but not a complete
loss, of DNMT1 expression (Figure 2e, right panel).

We also assessed the activity of DNA methylation by
measuring levels of intracisternal A particle (IAP). IAP is
normally highly methylated and its expression is silenced.
However, IAP expression can be reactivated upon DNA
hypomethylation (Hutnick et al., 2010). We reasoned
that if DNMT1 is effectively deleted in the epidermis, IAP
might become expressed to detectable levels. Indeed,
immunofluorescence shows that IAP is absent in WT skin
but is highly expressed in the ORS, with lower expression in
the hair matrix of the mutant (Figure 2e, left panel). Hair
matrix cells are supposed to be derived from the ORS. The
observation that matrix cells express IAP may be because of
changes in methylation activity in the matrix or, by specula-

tion, the expansion of epithelial cells whose DNMT is not
completely inactivated. If DNMT is suppressed, we expect
that the methylation level by 5-methyl cytosine should also be
reduced. IHC showed that there were fewer 5-methyl
cytosine–positive cells (Figure 2e, middle panel).

Gross phenotypes in DNMT1-deleted mice

At P3, no major phenotype differences are observed (not
shown). At P7 and P9, K14-Cre DNMT1fl/fl mice are smaller
and exhibit slight delays in hair development. By 2 months,
K14-Cre DNMT1fl/fl mice start to show alopecia phenotypes.
Body hairs are sparse and short compared with controls.
Hairless patches also appear on the trunk. By 1 year, the K14-
Cre DNMT1fl/fl mice have grown to equal the size of controls
but still exhibit a sparse and ruffled hair coat (Figure 3a and a0).
For further quantification, dorsal skin was excised, inverted,
and hair density was measured under a dissection microscope
(Figure 4). At 2 months of age, no significant difference in hair
density is observed (Figure 3b and b0; WT: 59.6±0.9
hairs mm�2, K14-Cre DNMT1fl/fl 60.4±1.2 hairs mm�2,
P40.05). At 1 year, hair density is less than half of that found
in normal littermates (Figure 3b and b0. WT: 53.2±1.0 hairs
mm�2, K14-Cre DNMT1fl/fl 25.6±3.0 hairs mm�2, Po0.05).

K14-Cre DNMT1fl/fl mouse vibrissae are curly and short
(not shown). Their pelage consists of four hair types: guard,
awl, auchene, and zigzag, each with a distinctive morphology
(Figure 3c). We wondered whether certain hair types develop
abnormally or are lost preferentially because of reduced DNA
methylation. Examination shows that the ratio of different hair
types is similar. However, we observe a reduction of hair size
in both diameter and length. This is seen in all hair types
(Figure 3d, Po0.05). Secondary hairs from K14-Cre DNMT1fl/fl

have a reduced diameter and appear to be only half the length
of WT. In general, the K14-Cre DNMT1fl/fl mouse hairs are
thinner than the corresponding wild-type hairs. In many of the
awl hairs, the normal 3 to 4 columns of medulla cells are
reduced to 1 to 2 columns (Figure 3d, lower panel).

Histopathology and molecular characterization of
DNMT1-deleted skin

DNMT1-deleted skin exhibits unevenness in the thickness of
the skin and follicle size of hairs. Some hair follicles have a
wider hair canal (Figure 4b and d). However, the general
architecture of hair follicles and filaments, which do form,
show no obvious abnormalities.

We used IHC to explore whether abnormal hair differentiation
occurred in the skin of adult K14-Cre DNMT1fl/fl mice (Figure 4a
and b). As in controls, K10 is expressed in the differentiated skin
keratinocytes. However, in contrast to control skin, involucrin
IHC showed precocious expression in some basal layer cells and
patchy staining in suprabasal cells of the mutant.

In telogen follicles, p63 is present in the basal epithelium
of follicular and interfollicular skin. K15 is present in the hair
germ of telogen follicles. K14 antibody stains the basal layer
of the skin and ORS layer of the follicle (Figure 4d). CD34
IHC staining does not show differences between mutant and
wild-type hair follicles (not shown). On the other hand, P16,
a cell cycle suppressor, is increased in the ORS of mutant
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follicles. CD200, which is expressed in the hair germ in the
bulge area, is decreased in mutant hair follicles.

In anagen follicles, the mAb AE15 stains the inner root
sheath and medulla of the hair shaft. AE13 stains the precortex
and the cortex of the hair shaft (Lynch et al., 1986). There are
no distinct differences in expression patterns of hair differentia-
tion markers between WT and mutant mice.

Progressive changes during aging of DNMT1-deleted mouse skin

We wondered whether this loss of hair fibers reflects a
comparable loss of hair follicles in the skin of K14-Cre
DNMT1fl/fl mice. The hematoxylin and eosin–stained sections
of 1-year-old mouse skin show that hair follicle density is
reduced, only by B25%, in K14-Cre DNMT1fl/fl mice
compared with their control littermates (Figure 4c and d).
Another marked difference is that mutant skin shows a large
percentage of telogen follicles, whereas the WT skin contains
patches of anagen and telogen hairs (Figure 4d).

We tried to observe the progression of a regenerative hair
wave (Plikus and Chuong, 2008a; Plikus et al., 2008b, 2011).
In the mutant, the skin remains static and many follicles fail to
reenter anagen even after 80 days (not shown). Telogen
duration is longer in the mutant than in the WT, whereas the
length of anagen is similar between mutant and WT hair
cycles (Figure 4e). Many telogen follicles in mutant skin are
empty without club hairs and are surrounded by hyper-
plastic sebaceous glands (Figure 4d). These results suggest
that either the prolonged telogen enables follicles to lose
their club hairs or that there are defects in retaining club
hairs.

DNMT1-deleted mice show reduced proliferation in anagen
hair matrix

In anagen, TA cells in the matrix proliferate and then move
upward and differentiate into the hair shaft (Zhang et al.,
2009). We analyzed the dynamics of cell proliferation. First,
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BrdU was used to label proliferating cells. Three-month-old
mice at day 6 in anagen were labeled with BrdU for 1 hour.
We can see that there are fewer labeled cells in the mutant’s
matrix, ORS, and bulge area (Figure 5a). The number of BrdU-

positive cells in the hair matrix, ORS, and bulge area was
quantified (WT¼52.17±5.42, 6.31±3.22, and 1.83±1.17,
respectively; K14-Cre DNMT1fl/fl¼22±3.03, 4.38±2.13, and
1±0.89, respectively). We also calculated the mitotic index and
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found that there was a reduction of BrdU-positive cells/total cell
number from 58 to 40% (Figure 5a0; Po0.05).

Thereafter, we estimated the upward movement
of TA cells in the hair matrix using double labeling with
chlorodeoxyuridine (CldU) and iododeoxyuridine (IdU),
followed by a chase period. In the hair follicle, most
cell proliferation occurs in the matrix below Auber’s line,
which traverses the largest diameter of the dermal papilla
(Peters et al., 2002). We expect that cells labeled
earlier should move more toward the distal bulb, whereas
newly labeled cells should be close to the base, or beneath
Auber’s line.

We labeled mice with CldU for 11.5 hours followed by a
short IdU labeling period of 0.5 hours. At the end of the 0.5-
hour period, mice are killed and the distribution of both CldU
(red)- and IdU (green)-positive cells are examined. In the WT
follicles, we observe many CldU-positive cells and roughly
half are above Auber’s line. In mutant follicles, there are
fewer CldU-positive cells, consistent with the decrease of cell
proliferation (Figure 5a). Furthermore, only approximately
one-third of CldU-labeled cells are above Auber’s line,
implying a reduced rate of upward movement (Figure 5b and
b0, red color). IdU-positive cells have entered S phase within
the most recent 0.5 hours. Most of them lay beneath Auber’s
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Figure 3. K14-Cre DNMT1fl/fl mice show reduced hair size in all hair types, and reduction of hair density in older mice. (a) One-year-old control and
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line (Figure 5b and b0, green color). Thus, TA cells in WT
follicles proliferate and progress to hair filament differentia-
tion, extending much further into the distal follicle than TA
cells in K14-Cre DNMT1fl/fl hair follicles.

DNMT1-deleted mice show decreased numbers of label-
retaining cells in the stem cell region

To gauge the ability of DNMT1 to maintain progenitor stem
cells, we measured the population size of long-term label-
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retaining cells. We injected CldU into newborn pups from
postnatal days 3–5 followed by an 8 week change period
(n¼3). Long-term label-retaining cells were analyzed by
CldU staining (Figure 5c, lower). The number of CldU-positive
cells per follicle was lower in the mutant than in the WT (three
follicles per mouse; Figure 5c0; Po0.05). We stained follicles
in very early anagen with K15 and Ki67 antibodies (Figure 5c,
upper). It appears that hair stem cells in the K14-Cre DNMT1fl/

fl mice can be activated properly during early anagen.

DNMT1-deleted mice show increased apoptosis in anagen hair
follicles

We examined levels of apoptosis using the TUNEL assay.
There are significantly more TUNEL-positive cells in the
matrix, ORS, and bulge area of the K14-Cre DNMT1fl/fl mice
(Figure 5d and d0. Po0.05). As DNMT1 has been shown to

participate in DNA repair processes (Mortusewicz et al.,
2005), we also examined the expression of gH2AX, a marker
for DNA damage. We observed many more gH2AX-positive
cells in K14-Cre DNMT1fl/fl mice compared with WT (Figure
5e and e0, Po0.05).

Delayed activation of hair stem cells after hair plucking
in K14-Cre DNMT1fl/fl mice

We wondered whether hair stem cells could respond to
activation signals properly. We used wax stripping to test
the response. A 1-cm2 region of dorsal skin is stripped of hairs.
By 11 days after plucking, hairs have regenerated in controls
but not in the K14-Cre DNMT1fl/fl mice (Figure 6a, middle
panel). The regeneration of hairs from mutant stem cells is
significantly delayed but occurs at day 21 (Figure 6a, right
panel).
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DISCUSSION
Here we first discuss the epidermal and hair phenotype, and
then the implications for DNMT activity on the homeostasis
of stem, TA, and differentiated cells.

Epidermis phenotype

In the skin, DNMT1 is expressed in the basal layer of the
epidermis. A recent study focused on its function in the
human epidermis differentiation in vitro and found that
DNMT1 was expressed in undifferentiated cells and is
required for self-renewal of epidermal progenitor cells. The
small hairpin RNA-mediated suppression of DNMT1 led to
decreased capabilities of self-renewal and precocious epi-
dermal differentiation (Sen et al., 2010). Our in vivo study on

mice with genetic changes is distinct from this published
work. Interestingly, we observed that the thickness of mutant
epidermis is uneven. Regions with thickened epidermis have
increased proliferation compared with WT. This finding may
imply a compensatory mechanism. In addition, differentia-
tion markers such as involucrin appear patchy: expressed in
the basal and suprabasal layer yet not in all suprabasal cells.
Histone methyl transferase, EZH (enhancer of zeste), expres-
sion has been disrupted in the skin (Ezhkova et al., 2011).
EZH1- and EZH2-null hair follicles degenerate because of
defective proliferation and increased apoptosis. Paradoxi-
cally, the mice also show hyperproliferation in the epidermis.
Thus, the epidermis in our mutant can be thicker and
individual cells appear larger, and this pathology becomes
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Figure 6. K14-Cre DNMT1fl/fl hair follicles show delay regeneration after plucking and summary diagram. (a) Hairs in a 1-cm2 area are stripped with

wax. At day 11 after waxing, new hairs appear in wild type (WT) but not in mutants (Mut). At day 21, both hairs have entered telogen. Upper half of

the plucked region was shaved to see whether they are still in anagen (above green arrows). Bar¼ 2 mm. (b) Schematic summary showing the roles

of DNA methyltransferase 1 (DNMT1) in skin morphogenesis. DNMT1 is involved in regulating epidermal progenitors and also hair follicle homeostasis.

In the epidermis, mutant epidermis becomes thicker. In hair follicles, DNMT1 is involved in regulating the proliferation and apoptosis of bulge label-retaining

cell (LRC) stem cells, outer root sheath (ORS), and matrix transient-amplifying (TA) cells. When DNMT1 is reduced, the probability of successful

stem cell activation progressively decreases, leading to disrupted homeostasis in the epidermis, hair follicle cycling, and response to plucking.

Reduction of hair fibers and follicles lead to the progressive alopecia phenotype. The color reproduction of this figure is available in the online version

of the article.
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more pronounced in the older mutants (Figures 2e and 4a).
More work will be required to study the molecular
differences.

Hair phenotype

Although the hair number appears normal in newborn mice,
the number of hair fibers is progressively lost as mutant mice
mature to adulthood. The number of hair fibers lost (450%)
is much greater than the reduction in hair follicles (20%), as
many follicles stay in telogen in aging mice. Mutant mice
show high variability in the size of hair follicles. Some
follicles are smaller than normal, whereas some follicles are
much larger (twice the diameter) with an enlarged hair canal
(almost 5 times wider; Figure 4b). Although many molecules
are suggested to regulate hair development, regeneration, and
cycling (Botchkarev and Paus, 2003; Mikkola, 2007), few
have been implicated in regulating hair size. Sharov et al.
(2006) found that epithelial Noggin can modulate hair follicle
size and hair fiber thickness. Hair size and diameter can
be regulated by b-catenin expressed within the dermal
papilla (Enshell-Seijffers et al., 2010). The loss of uniform
hair follicle size in our DNMT1-deleted mice implies that
stem cell homeostasis is lost to varied degrees across
the mouse skin. We speculate that it is possible that DNMT1
activity may be used to modulate hair follicle size in different
body regions.

Hair fibers, which form on the mutant skin, do not show
apparent architectural abnormalities or defective differentia-
tion. All hair subtypes do exist. Unlike the uneven size of
follicles, the hair fibers are consistently shorter in length and
thinner in diameter.

Roles of DNMT1 in homoeostasis maintenance in hair follicles

Mutant hair follicles exhibit decreased TA cell proliferation in
the ORS. They also demonstrate reduced upward migration.
There is increased apoptosis in the hair matrix, ORS, and
bulge area and increased DNA damage in the hair matrix. We
found that gH2AX is increased significantly in the DNMT1-
defective hair matrix cells. DNMT1-deficient HeLa and
HCT116 cells attenuate the cellular response to DNA damage
by 5-aza cytodine and block expression of gH2AX (Palii
et al., 2008). Accumulation of this damage in time may lead
to degeneration and loss of hair follicles, and eventually the
alopecia phenotype in aged mice.

However, K14 is expressed in the ORS, but not in the matrix.
Whether the effect on hair matrix is directly mediated by DNMT
or results from disrupted homeostasis of cell populations within
the hair follicle remains to be studied. This line of research may
be approached in the future by mating hair matrix–specific Cre
with floxed DNMT1 mice to drive the expression of deleted
DNMT1 to the matrix.

As mutant mouse hairs still undergo cycling and can
respond to plucking, bulge stem cells can be activated.
However, this ability gradually decreases as mice age, as
evidenced by the increased telogen period in old mutants.
The inability to activate stem cells for anagen reentry could
be due to depletion of hair stem cells or over-quiescent stem
cells that fail to respond to activation signals. We found that

the mutant and WT bulge cells express approximately
similar levels of K15, implying that the number of stem cells
is not exhausted. Thus, with a defect in DNMT, hair bulge
stem cells do seem to maintain a reasonable population
size, and are capable of being activated to become hair
germs and form hairs. However, the activation process takes
longer and occurs with lesser efficiency, and the ability for
self-renewal is also compromised. Thus, over time, the
number of successfully formed hair filaments reduces and
the some follicles degenerate. The detailed molecular
mechanism in the DNMT-deficient bulge remains to be
investigated. This is consistent with the idea that the
activation of hair stem cells is a stochastic event (Plikus
et al., 2011); we think that the observed progressive
alopecia phenotype is due to a decreasing probability of
successful anagen reentry. Higher expression of P16 is
consistent with this thought.

Progressive loss of DNMT1 protein or enzyme activity has
been reported in aging human fibroblasts (Casillas et al.,
2003), suggesting that DNMT1 loss in the epithelium may be
part of the aging process of the skin. Interestingly, K15-
positive stem cells remaining in the bald scalp of patients
with human androgenetic alopecia cannot be activated to
become proliferative hair germs (Garza et al., 2011). Future
work will identify the molecular targets of DNMT in these
stem cells and find out the relationship between mouse
epidermal DNMT defects and human androgenetic alopecia.

MATERIALS AND METHODS
Generation and analysis of tissue-specific K14-Cre DNMT1fl/fl

mice

Homozygous mice carrying the DNMT1fl/fl allele (Fan et al., 2001;

Jackson-Grusby et al., 2001) were crossed with mice carrying the

K14-Cre transgene (Andl et al., 2004; Hosokawa et al., 2009) and

bred to homozygosity. Heterozygous mice did not show a

phenotype. Cre excision resulted in an out-of-frame deletion of

exons 4 and 5 producing a nonfunctional DNMT1 allele. The use of

transgenic mice is approved by the USC Institutional Animal Care

and Use Committee. Mice were genotyped according to Jackson-

Grusby et al (2001). Briefly, genomic DNA was amplified by PCR.

Primers for the DNMT1 50 lox site, P1 (50-GGGCCAGTTGTGT

GACTTGG-30) and P2 (50-CTTGGGCCTGGATCTTGGGGA-30), am-

plify a 334-bp WT and 368-bp DNMT1fl/fl fragment. Cre primers

were Cre-F (50-TTGCCCCTGTTTCACTATCCAG-30) and Cre-R (50-

ATGGATTTCCGTCTCTGGTG-30). Cre-recombination efficiency

was assessed by PCR and western blot from genomic DNA and

nuclear protein procured from the epithelium at multiple ages.

Primers P1 and P2 amplified the floxed allele and P1 and P3

(50-ATGCATAGGAACAGATGTGTGC-30) amplified the recombinant

allele. The deletion efficiency was determined as the ratios of the

recombinant allele to floxed allele.

Measurement of hair number, length, and types

For hair number measurements, anagen-stage dorsal skin was fixed

in 4% paraformaldehyde and dehydrated through an ethanol series

and counted with skin inverted (n¼ 10 mice). The type and length of

each fiber was determined under a dissection microscope (n¼ 10

mice).
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Immunochemical procedure
Section IHC was performed on mouse dorsal skin samples following the

procedure of Jiang et al. (1998). The following primary antibodies were

used: rabbit anti-DNMT1 (1:200, Abcam, Cambridge, MA), mouse anti-

K14 (1:200, Thermo Fisher Scientific, Fremont, CA), mouse anti-K10

(1:200, Thermo Fisher Scientific), mouse anti-AE13 (1:200, Abcam),

mouse anti-AE15 (1:200, Santa Cruz Biotechnology, Santa Cruz, CA),

mouse anti-involucrin (1:200, Thermo Fisher Scientific), rabbit antipho-

spho-H2AX (1:100; Cell Signaling Technology, Danvers, MA), rabbit

anti-Lef1 (1:100, Cell Signaling Technology), rabbit anti-IAP (from Dr G

Fan) (Hutnick et al., 2010), rabbit anti-K15, and rabbit anti-Ki67 (1:500,

Thermo Fisher Scientific). Western blotting was performed as described

by Jiang et al., 2011.

BrdU, CldU, and IdU labeling

For label-retaining cell labeling, neonatal mice were subcutaneously

injected with CldU (50 mg per kg body weight) twice daily for 3 days

(n¼ 3), from the third day after birth. After chasing for 8 weeks,

dorsal skin tissues were excised. For the detection of proliferating

cells, mice with hair follicles at anagen day 6 were given

intraperitoneal injections of BrdU (100 mg BrdU per kg body weight;

Sigma-Aldrich, St Louis, MO) and killed 1 hour after injection.

Alternatively, mice were given CldU (100 mg CldU per kg body

weight; Sigma-Aldrich) for 11.5 hours and IdU for 0.5 hours, and

then killed. Tissues were fixed and sectioned as described above and

stained with mouse anti-BrdU (Millipore, Temecula, CA, MAB3424),

rat anti-CldU (Abcam, Ab6326-250), and mouse anti-IdU (BD,

347580) antibodies. Secondary antibody was conjugated with Alexa

Fluor 594 (Invitrogen, Carlsbad, CA).

TUNEL assay

In situ cell death detection kit (Roche, Pleasanton, CA) was used.

Hair plucking and regeneration

We plucked pelage hairs from a 1-cm2 area of the 6-month-old mice

with wax. Pictures were taken every 2 days until the hair coat

regenerated.
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