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SUMMARY

We report here genome-wide mapping of DNA meth-
ylation patterns at proximal promoter regions in
mouse embryonic stem (mES) cells. Most methylated
genes are differentiation associated and repressed in
mES cells. By contrast, the unmethylated gene set in-
cludes many housekeeping and pluripotency genes.
By crossreferencing methylation patterns to ge-
nome-wide mapping of histone H3 lysine (K) 4/27
trimethylation and binding of Oct4, Nanog, and Poly-
comb proteins on gene promoters, we found that
promoter DNA methylation is the only marker of this
group present on �30% of genes, many of which
are silenced in mES cells. In demethylated mutant
mES cells, we saw upregulation of a subset of
X-linked genes and developmental genes that are
methylated in wild-type mES cells, but lack either
H3K4 and H3K27 trimethylation or association with
Polycomb, Oct4, or Nanog. Our data suggest that
in mES cells promoter methylation represents a
unique epigenetic program that complements other
regulatory mechanisms to ensure appropriate gene
expression.

INTRODUCTION

Embryonic stem (ES) cells, which are derived from the inner cell

mass of blastocyst embryos, have the potential to differentiate

into all cell types including germ cells in vitro and in vivo, thus

representing an ideal system for studying regenerative medicine

(Keller, 2005). Factors influencing ES cell self renewal and differ-

entiation include extracellular matrix, growth factors and cyto-

kines, intracellular signaling molecules, transcription factors,

and epigenetic regulators such as histone modification and

DNA methylation (Keller, 2005). For example, key transcription

factors such as Oct4 (encoded by Pou5f1), Nanog, and Sox2

form a transcription regulatory network in ES cells that activates

genes essential for ES cell survival and proliferation while con-
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currently repressing those target genes that will be only activated

during cell differentiation (Boyer et al., 2005; Loh et al., 2006),

thus playing an essential role in maintaining the pluripotency

and self-renewal of ES cells (Avilion et al., 2003; Chambers

et al., 2003; Mitsui et al., 2003; Nichols et al., 1998).

More recently, the role of chromatin structure and epigenetic

modifications in controlling gene expression during ES cell

self-renewal and differentiation has been under intensive inves-

tigation (Bernstein et al., 2007; Guenther et al., 2007). For exam-

ple, gene repression mediated by the Polycomb group (PcG)

protein complex and the associated histone H3 lysine (K) 27 tri-

methylation is required for ES cell self-renewal and pluripotency

(Boyer et al., 2006; Lee et al., 2006). In addition, the genome of

ES cells contains domains with ‘‘bivalent’’ histone modifications

of both H3K4 and K27 trimethylation (H3K4me3 and H3K27me3)

that mark a number of differentiation genes, including many tran-

scription factors, which are repressed in ES cells but ‘‘poised’’ to

be activated upon differentiation (Bernstein et al., 2006; Mikkel-

sen et al., 2007; Pan et al., 2007; Zhao et al., 2007). However, the

remaining approximately one-third of genes are not marked by

histone modifications of either H3K4me or H3K27me3, and yet

are mostly repressed in ES cells (Mikkelsen et al., 2007; Pan

et al., 2007; Zhao et al., 2007). Our knowledge is also very limited

as to how multiple regulatory mechanisms including transcrip-

tional factors and epigenetic factors, such as histone modifica-

tion and DNA methylation, are coordinated to control the ‘‘on’’

and ‘‘off’’ of pluripotent versus developmental genes in ES cells

and during in vitro differentiation of ES cells.

DNA methylation in mammalian cells is postulated to play mul-

tiple roles in cell physiology, including genome stability, repres-

sion of endogenous retroviral and transposable elements, geno-

mic imprinting, and developmental gene regulation (Bird, 2002;

Jaenisch and Bird, 2003; Li, 2002; Robertson, 2005; Feng

et al., 2007). During embryogenesis, levels of DNA methylation

are dynamically regulated by the de novo DNA methyltransferase

(Dnmt) 3a, Dnmt3b, and maintenance enzyme Dnmt1 (Chen and

Li, 2004; Goll and Bestor, 2005). Failure to place or maintain the

patterns of DNA methylation leads to early embryonic lethality in

mice (Li et al., 1992; Okano et al., 1999) and also many human

diseases including cancer, fragile-X, ICF, and ATRX syndromes

(reviewed by Robertson, 2005). Interestingly, mES cells deficient
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for DNA methylation can survive and proliferate in an undifferen-

tiated state (Meissner et al., 2005; Tsumura et al., 2006) but un-

dergo rapid apoptotic cell death upon in vitro differentiation

(Panning and Jaenisch, 1996). Therefore, it is still unclear as to

whether DNA methylation plays any role in gene expression

and the maintenance of pluripotency in mES cells.

In mES cells, each of the highly expressed Dnmts play a spe-

cific role in the establishment and/or the maintenance of DNA

methylation (Chen et al., 2003). The total level of methylcytosine

in mES cells is similar to that in differentiated tissues such as kid-

ney and liver cells in vivo (Biniszkiewicz et al., 2002). Several re-

cent studies have attempted to identify changes in methylation

patterns during long-term cultures or upon cell differentiation

of ES cells. In both mouse and human ES cells, a subset of

CpG islands are subject to de novo methylation during in vitro

differentiation (Hattori et al., 2004 ; Kremenskoy et al., 2003;

Shen et al., 2006). A more recent study demonstrated that an in-

crease in DNA methylation occurs in selected CpG islands in

a few lines of hES cells during long-term passages (Allegrucci

et al., 2007). Overall, these studies suggest that methylation pat-

terns in ES cells may be distinctly different from differentiated so-

matic cells and that the methylation status of ES cells or ES cell

derivatives should be monitored carefully when they are used in

regenerative medicine (Allegrucci et al., 2007; Shen et al., 2006).

We report here a comprehensive genome-wide mapping of

promoter methylation patterns in undifferentiated mouse ES

cells. We further examine the relationship between DNA methyl-

ation, histone modifications, and the promoter occupancy of plu-

ripotent regulators such as Polycomb group proteins (PcG) and

Oct4/Nanog in regulating gene expression in mouse ES cells.

Our results reveal that CpG methylation patterns complement

other regulatory mechanisms in maintaining the unique tran-

scriptional program of undifferentiated mES cells.

RESULTS

Genome-wide Profiling of Promoter
DNA Methylation in mES Cells
With the knowledge of genome-wide patterns of histone modifi-

cations, PcG binding, and Oct4/Nanog/Sox2 binding in mouse

and human ES cells (Boyer et al., 2005, 2006; Bernstein et al.,

2006; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al.,

2007), we wanted to map DNA methylation patterns in gene pro-

moters to address the role of DNA methylation in ES cells in the

context of other regulatory mechanisms. One high-throughput

method involves the enrichment of the methylated DNA through

the use of immunoprecipitation with methylcytosine antibodies

or methyl-binding domain from MeCP2 in a column (Cross

et al., 1994; Weber et al., 2005). By coupling methylated DNA im-

munoprecipitation with DNA microarray chip technology (mDIP-

Chip), genome-wide methylation profiles have been examined

for human normal and cancer cell lines, as well as Arabidopsis

thaliana (Keshet et al., 2006; Weber et al., 2005, 2007; Zhang

et al., 2006; Zilberman et al., 2007). These studies have provided

valuable insights into the function and evolution of DNA methyl-

ation in different types of cells and organisms.

Using a previously described mDIP protocol (see the Experi-

mental Procedures) (Keshet et al., 2006; Zhang et al., 2006), we

immunoprecipitated methylated DNA from a line of male wild-
type (WT) mES cells (J1 cells) as well as J1-derived mutant ES

cells (Dnmt3a�/�, Dnmt3b�/�; Dnmt1 KD [TKO]) that are virtually

demethylated across the entire genome (Meissner et al., 2005).

We performed crosshybridization of pull-down DNA from WT

and TKO cells with Agilent microarrays, which contain 15,561 an-

notated gene promoters with a resolution of one 60-mer probe for

every 200 bp region (see Table S1 available online). To annotate

the methylation status of each probe on each promoter, we first

classified promoter probes into two subgroups that are either

within a CpG island (>200 bp, GC > 50%, observed/expected

CpG ratio > 0.6) or in a region outside of CpG island. By this clas-

sification,�25% of total probes are within CpG islands and 75%

of probes are in non-CpG island promoter regions (Figure 1A). Af-

ter plotting the averaged log2 ratios for each probe (WT over TKO)

from seven replicates of independent mDIP/hybridization exper-

iments, we found a clear bimodal distribution of probe sets within

or outside CpG islands (Figure 1A). A majority of probes within

CpG islands showed log2 ratios less than 0, suggestive of an un-

methylated state. We confirmed the unmethylated status of nine

promoter regions with probe log2 ratios < 0 by using established

methylation assays such as bisulfite sequencing and McrBC/

HpaII genomic PCRs (Figure 1B and Figure S1). In contrast,

a large fraction of non-CpG island probes exhibit log2 ratios > 0,

suggesting a methylated state. As shown in Figure 1B and sum-

marized in Table S2, we confirmed that all 32 promoter regions

we analyzed with probe log2 ratios > 0 were methylated. We fur-

ther examined the methylation status of the entire promoter re-

gion by using the transient receptor potential channel 1 (Trpc1)

gene locus on chromosome 9 as an example. The Trpc1 pro-

moter contains probes both inside and outside of CpG islands

with probe log2 ratios ranging from �0.20 to +1.06. We found

that significant hybridization signals (log2 > 0.2) are over the

non-CpG island promoter regions (�250 bp to �1200 bp), but

not near or over the CpG island (<0.2) (Figure 1C). Bisulfite geno-

mic sequencing confirmed that the region containing the probes

with signals less than 0.2 was either unmethylated or sparsely

methylated. Moreover, a gradient of increasing methylation over-

lays the non-CpG island region in the promoter with hybridization

signals > 0.2, which is confirmed to be heavily methylated

(Figure 1D). The distribution of averaged probe log2 ratios for

each of 15,561 gene promoters can be visualized through an on-

line genome browser as seen in Figure 1C.

With the above data, we made a large-scale annotation of

proximal promoters as either methylated or unmethylated by

setting up the following stringent criterion. To be annotated as

a methylated region, the average probe log2 ratios of WT over

TKO in that promoter region should be R0.2 and the statistical

significance of the difference between hybridization intensities

of WT and TKO should be p < 0.01 (t test). Using this criterion,

we have annotated 6127 genes (39.4%) as methylated, which

contain at least one methylated domain surrounding the hybrid-

ized probe(s) in their proximal promoter (e.g., TrpC1, see Table

S1). To be annotated as an unmethylated promoter, all probes

on a promoter region should have average probe log2 ratios < 0

with p < 0.01 (t test). Using this conservative criterion, we anno-

tated 5074 unique genes (32.6%) that are unmethylated in the

entire proximal promoter region (Table S1). The remaining genes

(28% out of a total 15,561 promoters) that do not meet our des-

ignated criteria are excluded from further analysis.
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Figure 1. Using mDIP-CHIP Assay to Profile the Promoter Methylation Pattern in WT mES Cells

(A) All probes for the array are classified as either inside or within 50 bp of a CpG island (white) or outside a CpG island (gray) and then grouped by their average

log2 ratio. The solid line is placed at log2 ratio of +0.2 value to annotate the proportion of methylated gene promoters.

(B) Using the average log2 ratio, we selected three genes thought to be methylated as well as three that were thought to be unmethylated. For the bisulfite con-

firmation, each line represents an individual clone and each circle represents a CpG dinucleotide. The red line indicates the region we analyzed. Filled circles are

methylated CpGs, and open circles are unmethylated.

(C) The average signals (log2 ratio) for each probe (block with double arrowheads) in the promoter region are plotted in the UCSC genome browser—here we take

the Trpc1 gene as an example. Note the dark probes annotate probes with high log2 ratios, whereas light color probes represent probes with low or negative log2

ratios.

(D) The confirmation of methylation status for the probes in the Trpc1 gene either inside or outside of a CpG island. Red bars (I–IV) indicate regions analyzed.

Region I shows a gel picture of an McrBC-HhaI genomic PCR, indicating the unmethylated state of the CpG island of the Trpc1 transcription start site. II–IV

show bisulfite genomic sequencing results of methylated probes upstream of the CpG islands, indicating a gradient of methylation toward the probes with

high log2 ratios (filled dots are methylated CpG sites).
Based on their entire CpG contents across the genomic re-

gion, gene promoters have been recently classified into one

of three categories: HCP (high CpG promoter that contains a

500 bp region with a GC content R 0.55 and a CpG observed

to expected ratio R 0.6), LCP (low CpG promoter containing

no 500 bp interval and with a CpG observed to expected ratio

R 0.4), and ICP (intermediate CpG content promoter with CpG

density between HCP and ICP) (Mikkelsen et al., 2007; Weber

et al., 2007). Using the data set generated by Mikkelsen et al.

(2007), we further examined the CpG content in the pool of meth-

ylated versus unmethylated promoters in mES cells. We found

that in the pool of methylated genes, 51% of them belong to

the HCP cluster, which is much lower than the genome average

(67%) (Figure 2A). In contrast, in the pool of unmethylated genes,

over 85% of genes are considered HCP promoters (Figure 2A).

Detailed analysis of the distribution of methylated probes over

the HCP promoters, which should contain at least a CpG island

by the definition, indicated that only 3% of HCP genes have

a methylated probe that overlaps with the CpG island itself (Fig-

ure 2C and Table S1). In contrast, in the pool of ICP and LCP

genes, �80% are annotated as methylated genes (Figure 2B).

We conclude that DNA methylation in mES cells primarily takes

place on ICP and LCP promoters or on non-CpG island regions

of HCP promoters.

Gene Ontology Analysis of Unmethylated versus
Methylated Promoters in mES Cells
To understand further the role of DNA methylation in mES cells,

we performed gene ontology analysis of the 6127 methylated

genes in mES cells. We found that methylated genes can be
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classified into sensory perception in response to stimuli and cell

signaling molecules (Figure 3A and Table S3). This suggests that

genes that exhibit DNA methylation are late differentiation-asso-

ciated and signal transduction genes. Comparing these genes

with gene expression data sets for mES cells in the GEO data-

base also indicated that a majority of these genes are not ex-

pressed in mES cells (data not shown).

In contrast, gene ontology analysis on the list of 5074 unme-

thylated genes further indicated that over 50% of unmethylated

genes are associated with transcription machinery, protein and

RNA metabolic process, and other cellular machinery essential

for cell survival and proliferation (Figure 3B and Table S3). This

result suggests that the unmethylated status of the proximal

gene promoter is a good indicator for those genes that would

be expressed in mES cells. In addition, gene ontology analysis

showed that approximately 10%–15% of unmethylated genes

are classified as genes involved in cell differentiation and devel-

opmental process, which are not expressed in mES cells. Poten-

tially, the repression of this small subset of development genes in

mES cells could be through other mechanisms such as PcG

complex- and Oct4/Nanog complex-mediated gene inhibition

(see below) (Boyer et al., 2005, 2006; Lee et al., 2006; Loh

et al., 2006).

Relationships between DNA Methylation
and Histone Modifications in mES Cells
To understand further the role of epigenetic regulation in mouse

ES cells, we compared our methylation data to recent whole-ge-

nome histone mapping (Mikkelsen et al., 2007). Mapping of his-

tone modifications in the promoter region of both mouse and
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Figure 2. CpG Density of Methylated and Unmethylated Promoters

(A) Classification of all promoters, methylated promoters, or unmethylated promoters with high (HCP), intermediate (ICP), and low (LCP) CpG content. It should be

noted that these classifications were assigned for V6.5 mouse ES cells, which are similar but not the same as the J1 mouse ES cells used in our study.

(B) Breakdown of methylation status for HCP, ICP, and LCP promoters.

(C) Percentage of genes with methylated CpG islands in HCP- and ICP-containing genes. By definition, there are no CpG islands in LCP-containing genes.
human ES cells (Guenther et al., 2007; Mikkelsen et al., 2007;

Pan et al., 2007; Zhao et al., 2007) has shown four distinct pop-

ulations of genes that are associated with either H3K4me3 or

H3K27me3 alone, bivalent H3K4me3 and H3K27me3, or neither

of these marks. H3K4 and H3K27 trimethylation can be ex-

plained by the actions of Trithorax (trxG) and PcG complexes

and possibly the occupancy of key transcription factors, but

the absence of both H3K4me3 and H3K27me3 in a significant

portion of genes (27%–33% of all annotated genes) suggests

the presence of other unique epigenetic marker(s) (Mikkelsen

et al., 2007; Pan et al., 2007; Zhao et al., 2007). By comparing

the distribution across the genome (Mikkelsen et al., 2007), we

found that the subset of genes lacking both H3K4 and K27me3

marks are significantly enriched in methylated genes, but under-

represented in unmethylated genes (Figure 4A). We noticed that

the majority of genes without either H3K4 or K27me3 are found in

ICP and LCP genes (Mikkelsen et al., 2007), which are enriched

in the pool of methylated genes in our study (Figures 4B and 2B).

Moreover, examination of the overlap between methylated

genes and the subset of genes lacking both H3K4 and

K27me3 showed that�87% of genes with neither of these marks

are methylated in the proximal gene promoter regions (Fig-

ure 4C). In fact, the gene ontology terms for those genes without

H3K4 and K27me3 are similar to the terms in our Gene Ontology

analysis of methylated promoters in mES cells (data not shown;

compare Figure 3A here with Figure 5 in Pan et al., 2007). Thus,

for the roughly one-third of genes without H3K4 and K27me3,

our analysis suggests that DNA methylation could be considered

a distinguishing epigenetic mark.

To analyze further the significance of the presence of DNA

methylation on the subpopulation of genes without H3K4 or

K27me3, we used previously published expression array data

(Mikkelsen et al., 2007) to assay whether the presence of DNA

methylation is correlated with gene repression in mES cells.

We found that �80% of methylated genes lacking both histone

H3K4 and K27me3 marks are not expressed in mouse ES cells

(data not shown). We conclude that DNA methylation in proximal

gene promoters is highly correlated with gene silencing for genes

that lack both H3K4 and H3K27 trimethylation.

For the pool of genes carrying H3K4me3 only, we found that

unmethylated promoters make up�60% (Figure 4C), consistent
with the possibility that these genes are the most actively tran-

scribed in mES cells (Mikkelsen et al., 2007). For the pool of

genes carrying H3K4/K27me3 bivalent marks, we found that

53% are unmethylated (Figure 4C). This result suggests that re-

pressive mechanisms associated with bivalent H3K4/K27 such

as Polycomb-mediated gene silencing may be a predominant

factor in controlling gene activities for this subset of genes in

mES cells (see next section). However, DNA methylation could

serve as a secondary repressive mechanism to modulate further

the activities of these bivalent genes in mES cells or upon cell dif-

ferentiation. Finally, for genes with only the H3K27me3 mark, al-

though the pool of genes may be too small (n = 66) to draw

definitive conclusions, �70% are methylated (Figure 4C).

Relationships between DNA Methylation and PcG
Complex- or Oct4/Nanog Complex-Mediated Gene
Regulation in mES Cells
In mouse and human ES cells, Polycomb proteins were found to

bind and repress a subset of developmental genes, rendering

them ‘‘poised’’ for expression upon differentiation (Boyer et al.,

2006; Lee et al., 2006). To determine directly whether Poly-

comb-targeted genes in mES cells also show promoter methyl-

ation, we compared the PcG-targeted genes in mES cells with

our list of methylated (n = 6127) and unmethylated (n = 5074) pro-

moters and found that only 28.7% (98 out of 342) exhibit pro-

moter DNA methylation (Figure 4D and Tables S1 and S4). This

result suggests that the pool of genes targeted by DNA methyl-

ation and PcG are distinctively different. That a majority of PcG

complex-repressed genes are unmethylated (71.3%) in mES

cells is more compatible with the possibility that the PcG-tar-

geted genes are poised to be activated upon cell differentiation.

It is also known that transcription factors Oct4, Nanog, Sox2,

and Stat3 are required for the pluripotency and self-renewal of

mES cells. The gene promoters of Oct4, Nanog, Sox2, and

Stat3 are all unmethylated, allowing for high levels of expression

in mES cells (Table S1 and Figure 1B) (Imamura et al., 2006).

Oct4, Nanog, and Sox2 form a regulatory circuit that maintains

their own expression and that of many other genes essential

for ES cell self-renewal and at the same time represses differen-

tiation genes (Boyer et al., 2005; Loh et al., 2006; Pan and Thom-

son, 2007; Walker et al., 2007). We therefore examined whether

Cell Stem Cell 2, 160–169, February 2008 ª2008 Elsevier Inc. 163
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Figure 3. Comparison of Methylated and

Unmethylated Genes with H3K4me3 and

H3K27me3

Gene ontology classifications for methylated (A) or

unmethylated (B) genes. The GO term is on the

y axis, and the p value indicating significance of

enrichment is on the x axis.

that DNA methylation could be a separate

epigenetic regulator that works in paral-

lel, but generally in a nonoverlapping

fashion with the action of the Poly-

comb-repression complexes and tran-

scription factors such as Oct4 and Nanog

in regulation of the pluripotency and dif-

ferentiation program of mES cells.

Comparison of Gene Expression
in Methylation-Proficient
and -Deficient mES Cells
To examine whether DNA methylation di-

rectly regulates the expression of genes

in mES cells, we carried out genome-

wide gene expression analysis (see

the Experimental Procedures) in WT and

methylation-deficient mES cells that

lack all three Dnmts (TKO cells) (Meissner

et al., 2005). The TKO ES cells are virtu-

ally demethylated across the entire ge-
promoter methylation is correlated with either the activation or

repression of genes by the Oct4/Nanog/Sox2 complex in mES

cells. Because we were focusing on the relationship between

proximal promoter methylation and occupancy of Oct4/Nanog,

we confined our search to genes that are bound by Oct4/Nanog

within 10 kb of the transcription initiation site and either methyl-

ated or unmethylated on our promoter array (109 genes bound

by Oct4 and 211 target genes bound by Nanog). We found that

�42% and 36% of Oct4- and Nanog-targeted genes, respec-

tively, contain methylation domain(s) in the proximal promoter

regions in mES cells (Figure 4D and Tables S1 and S4). Con-

versely, 64% of Nanog targeted genes and 58% of Oct4-tar-

geted genes are totally unmethylated in mES cells (Figure 4D

and Tables S1 and S4). To confirm further these results, we an-

alyzed all bound loci for Nanog and Oct4, some of which are up

to 500 kb away from a known transcript. Again, we found similar

results for all Nanog and Oct4 bound loci (46% of genes for both

Nanog and Oct4 are methylated). When we looked to see

whether there was any association with gene expression, we

found that 91%–93% of unmethylated Oct4/Nanog proximal

bound genes were expressed (data not shown). When looking

at genes that are methylated and bound by either Nanog or

Oct4, we found that �75% are expressed (data not shown).

Thus, DNA methylation might play a small role in dampening

the expression of Oct4/Nanog bound genes, but overall does

not appear to have a strong effect. Taken together, our data favor

the hypothesis that methylation-mediated repression is indepen-

dent of Oct4/Nanog-mediated gene expression. This suggests
164 Cell Stem Cell 2, 160–169, February 2008 ª2008 Elsevier Inc.
nome but exhibit cell proliferation properties and embryonic

stem cell markers similar to those of the parental WT J1 mES

cells. In the first round of bioinformatics analysis with a fold

change cutoff of 2 (see the Experimental Procedures), our ge-

nome-wide expression profiling yielded a list of 337 genes that

are upregulated and 113 genes that are downregulated in the

TKO cells compared to WT (Table S5). Using a less strict filter

that accounts for genes that may be turned completely off in

the WT condition but slightly expressed in the TKO cells

(Ohm et al., 2007), we found an additional 53 genes that were up-

regulated upon loss of DNA methylation. The inability of methyl-

ation-deficient ES cells to differentiate can result in potential

inaccuracies when analyzing genes that are downregulated.

For example, the existence of a small percentage of partially dif-

ferentiated cells found in WT ES cell cultures but not in the TKO

cultures (due to cell death) could contribute to the list of downre-

gulated genes in TKO cells. Therefore, the analysis of upregula-

tion of genes in TKO cells versus WT cells is more robust for as-

certaining the effect of DNA demethylation on gene expression.

Gene ontology analysis of these upregulated genes shows an

overrepresentation of tissue-specific genes, such as transcrip-

tion factors and signaling molecules (Figure 5A). We then exam-

ined the tissue specificity of each upregulated gene and found

that testis- and oocyte-specific genes were highly enriched in

the TKO cell line (Figure 5B and Table S6). We were interested

to see whether there are any genomic loci that were enriched

in deregulated genes. When we mapped the list of genes that

were upregulated in TKO mES cells to their loci, we found that
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Figure 4. Comparison of Methylated and

Unmethylated Genes with H3K4me3 and

H3K27me3 as Well as Nanog, Oct4, and PcG

Bound Genes

(A) Classification of all promoters, methylated pro-

moters, or unmethylated promoters with H3K4me3,

H3K27me3, H3K4me3 and H3K27me3 (bivalent),

or neither mark. Methylated genes are enriched

for genes without either histone mark.

(B) Percentage of K4, K4/K27, K27, or neither

bound genes that are HCP, ICP, or LCP.

(C) Breakdown of methylation status for genes

with H3K4me3 only, H3K27me3 only, H3K4me3

and H3K27me3 (bivalent), or neither mark.

(D) Bar graph showing the breakdown of methyla-

tion status for PcG, Nanog, or Oct4 bound genes

in mES cells. The Nanog, Oct4, and PcG bound

genes that are either methylated or unmethylated

are listed in Table S1.
a high percentage are located on the X chromosome (14.5% of

observed values versus 4% of expected) (Figure 5C). We con-

firmed the microarray data by real-time PCR for a few genes, in-

cluding the X-linked genes Rhox2 and Magea3 (Figure 5D and

S.D.F. and G.F., unpublished data). The upregulation of many

X-linked genes was also found in a separate line of methyla-

tion-deficient mES cells due to Dnmt1 gene deletion (Lei et al.,

1996) (Figure S2), consistent with the notion that DNA demethy-

lation is linked to the upregulation of this subset of X-linked

genes.

We next looked to see what histone marks the TKO upregu-

lated genes had and whether they were also marked by DNA

methylation. When we look at the breakdown of histone marks

among the TKO upregulated genes, we find that 40% are lacking

both H3K4 and K27me3, 35% are bivalent K4/K27me3, 23% are

K4me3, and 2% are K27me3 only. Of the TKO upregulated that

are not marked by either histone mark, we find that 85% are

methylated in WT mES cells (Table S7). In fact, the X-linked

Rhox family genes that are upregulated in the absence of DNA

methylation fall in this category (Figure 5D). This result suggests

that DNA methylation is one of the major repressive mechanisms

for a subset of genes that lack both H3K4 and K27me3 in mES

cells. In contrast, when we examined the methylation status for

the subset of genes with bivalent H3K4/K27me3 or H3K4me3

only in WT mES cells that would be upregulated in TKO cells,

we found they are not as frequently methylated as genes without

H3K4 or K27me3 (37% and 50%, respectively).

To determine whether DNA demethylation also affects the ex-

pression of any genes that are repressed by PcG or Oct4/Nanog/

Sox2, we compared the genes that are upregulated in the DNA

methylation-deficient mouse ES cells to the list of genes that

are bound by the PcG complex and Oct4/Nanog (Boyer et al.,

2006; Loh et al., 2006). Interestingly, only 5.7% (29/512) of upre-

gulated genes in TKO mES cells overlap with the PcG bound

genes (Figure 6 and Table S7). This result provides further evi-

dence that the genes repressed by PcG are distinct from the

DNA-methylated gene set. Similarly, we found that only 1.7%

(9/525) of Nanog and/or Oct4 proximal promoter (within 10 kb)
bound genes (or 1.2% [37/3080] of all Nanog and/or Oct4 bound

genes [up to 500 kb from the transcript]) (Loh et al., 2006) overlap

with the upregulated genes in demethylated ES cells (Figure 6

and Table S7), although it should be noted that the majority of

genes that are bound by Oct4/Nanog and methylated are ex-

pressed even in WT cells. Nevertheless, these results also sup-

port the conclusion that DNA methylation and the transcriptional

factor complex containing Oct4/Nanog play distinct roles in gene

regulation in pluripotent mES cells.

DISCUSSION

ES cells represent a unique type of stem cell that can undergo in-

definite cycles of self-renewal while maintaining pluripotency.

Previous studies have identified many crucial gene transcription

factors and regulatory networks that are required for maintaining

the ‘‘stemness’’ of ES cells (Avilion et al., 2003; Chambers et al.,

2003; Ivanova et al., 2006; Mitsui et al., 2003; Nichols et al., 1998;

Walker et al., 2007). One of the insightful conclusions is that

Oct4, Nanog, and Sox2 form transcriptional circuitry to activate

their own expression in a forward feedback manner; furthermore,

the Oct4/Nanog/Sox2 complex promotes expression of those

genes required for the self-renewal of ES cells, but represses

the developmental genes that will only be activated upon cell dif-

ferentiation (Boyer et al., 2006; Loh et al., 2006). In addition,

along with Oct4/Nanog/Sox2, Trithorax complex- and Polycomb

complex-mediated histone modifications are also involved in the

activation or repression genes, as well as in maintaining the

‘‘poised’’ nature of some genes (Mikkelsen et al., 2007; Walker

et al., 2007; Pan et al., 2007; Zhao et al., 2007). In this report,

we have comprehensively mapped CpG methylation in the prox-

imal gene promoter regions and identified 6127 methylated and

5074 unmethylated proximal gene promoters. Our data help re-

fine the emerging epigenetic landscape of mES cells. By com-

paring promoter DNA methylation with histone modifications,

we can gain insights into how overlapping or independent epige-

netic regulators regulate particular sets of genes (Figure 7). One

of the interesting findings in this study is that DNA methylation
Cell Stem Cell 2, 160–169, February 2008 ª2008 Elsevier Inc. 165



Cell Stem Cell

Promoter DNA Methylation Analysis in mES Cells
Figure 5. Gene Expression Profiling of DNA Methylation-Deficient mES Cells

(A) Gene ontology analysis for upregulated genes in TKO cells shows enrichment of transcription factor activity, protein binding, extracellular region, and devel-

opmental genes.

(B) Tissue specificity of overexpression genes in TKO cells. Upregulated genes were analyzed for the tissues that are normally expressed in using the GNF da-

tabase. Note the overrepresentation of genes that are expressed in reproductive tissues including ovary/testis (16.2%) and placenta/umbilical cord (11.3%).

(C) The chromosomal location of the 390 genes that are upregulated in TKO mES cells compared to WT mES cells (clockwise from chromosome 1 to X and Y sex

chromosomes). The percentage of genes upregulated on the X chromosome is 14.5%.

(D) Confirmation of Rhox2 and Magea3 that are upregulated in DNA methylation-deficient mES cells by qPCR analysis. *p < 0.05. Error bars represent standard

deviations.
occurs in �87% of the genes in ES cells that lack either

H3K4me3 and H3K27me3 (Figure 4B). This population of meth-

ylated genes could potentially constitute close to one-third of all

annotated genes in mouse and human ES cells (Mikkelsen et al.,

2007; Pan et al., 2007; Zhao et al., 2007). Therefore, we conclude

that DNA methylation in proximal gene promoter regions repre-

sents another major epigenetic marker that can distinguish dif-

ferent classes of genes in undifferentiated ES cells (Figure 7).

In this study, we provided evidence that DNA methylation is

causally linked to the silencing of a cluster of X-linked genes

and a subset of developmentally regulated genes. It should be

noted that the mES cells used in these experiments are male

(XY) and lack X inactivation; therefore, upregulation of X-linked

genes in TKO mES cells cannot be related to deregulation of X

inactivation. However, it is known that genes involved in germ

cell differentiation and sex development are overrepresented

on the X chromosome (Wang et al., 2001), and many of these

genes tend to be duplicated on the X chromosome. Furthermore,

DNA methylation is proposed to directly silence many genes in-

volved in germ cell development (Maatouk et al., 2006). Indeed,
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Rhox family genes that have been shown to be duplicated exten-

sively on the X chromosome are repressed by DNA methylation

in somatic cells and ES cells (MacLean et al., 2005, 2006; Oda

et al., 2006). Similarly, DNA methylation represses the Mage

gene family and the Dazl gene that are related to germ cell devel-

opment (Chuang et al., 2005; De Smet et al., 1999; Maatouk

et al., 2006). Finally, demethylation-induced overexpression of

Mage family genes is also observed in somatic cells treated

with 50azacytodine to inhibit Dnmts (Chuang et al., 2005). It is

worth noting that the upregulation of a subset of X-linked and de-

velopment genes apparently does not interfere with the self-re-

newal of demethylated ES cells. Thus, ES cells can tolerate the

overexpression of a subset of genes that serve a specialized

function in germ cell or other types of somatic cells.

Although our study provides direct evidence that DNA deme-

thylation can induce gene activation for a number of cell differen-

tiation genes, we also found many genes are not upregulated in

the absence of DNA methylation. This result is in contrast to the

result observed in demethylated primary fibroblasts, in which up

to 10% of expressed genes can be upregulated compared to WT
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primary fibroblasts (Jackson-Grusby et al., 2001). Genome-wide

mapping of histone modifications indicated that bivalent H3K4/

K27me3 is more widespread than the association of Polycomb

proteins (Boyer et al., 2006; Mikkelsen et al., 2007; Figure 7).

Moreover, many methylated genes also contain H3K27me3 or

bivalent H3K4/K27me3 markers in mES cells, raising the possi-

bility that repressive histone marks can to some extent compen-

sate for loss of DNA methylation in gene repression. It is also

possible that compensatory repressive mechanisms have be-

come activated during generation and culture of the TKO cell

line. In addition, a lack of proper gene transcription activators

in mES cells for those demethylated genes may also account

for the continued inactive status of a majority of demethylated

genes in TKO mES cells. Our results are consistent with the no-

tion that DNA demethylation is necessary but not sufficient for

gene activation. Conversely, methylation of a promoter is not

always sufficient for gene repression. Using previously published

gene expression data for mES cells, we found that up to 36% of

genes are still expressed even if methylated in the proximal pro-

moter. However, 80% of the expressed genes that exhibit pro-

moter methylation are marked by the active histone H3K4me3

mark and are HCP genes. These observations are consistent

with the suggestion by Weber et al. (2007) that a low density of

DNA methylation in a gene promoter may not be sufficient to si-

lence gene transcription by itself.

The mapping of promoter methylation patterns in mES cells

could provide insights into why mES cells are a good cell source

for somatic nuclear transfer experiments when compared to dif-

ferentiated somatic cells (Yamanaka, 2007). One of the major

hurdles in somatic nuclear transfer experiments is the efficiency

of epigenetic reprogramming. It has been shown that a panel of

genes including Oct4 and Dppa4 are only partially reactivated in

somatic nuclear reconstituted blastocyst embryos, which could

be attributed to the incomplete demethylation of Oct4 and Dppa

family genes in somatic nuclei during reprogramming (Bortvin

et al., 2003). Our methylation mapping indicated that both Oct4

and Dppa4 genes are demethylated in mES cells, supporting

Figure 6. Comparison of Upregulated Genes in Demethylated mES

Cells with Oct4, Nanog, and PcG Bound Genes

Venn diagram showing the minimal overlap between the TKO upregulated

genes (green), Nanog and/or Oct4 bound genes (within 10 kb proximal pro-

moter region) (blue), and PcG bound genes (yellow). It should be noted that

there is one gene, Podxl, which overlaps with all three categories. This analysis

includes all genes, not just those present on the promoter methylation array.

The Nanog, Oct4 (Loh et al., 2006), and PcG (Boyer et al., 2006) bound genes

that overlap with TKO upregulated genes are listed in Table S7.
the notion that ES cells are more easily reprogrammed than

somatic nuclei.

In summary, our comprehensive mapping of DNA methylation

of gene promoters in mES cells provides a valuable resource for

understanding the function of DNA methylation in the mainte-

nance of self-renewal and pluripotency. Furthermore, the meth-

ylation patterns in gene promoters may also represent an epige-

netic code that underlies the program of lineage-specific

differentiation.

EXPERIMENTAL PROCEDURES

ES Cell Cultures

ES cells were maintained as previously described (Meissner et al., 2005). RNA

was isolated using Trizol (Invitrogen) while DNA was isolated using DNA lysis

buffer, and then phenol:chloroform extracted.

Figure 7. A Schematic Summary of Epigenetic and Transcriptional

Regulation in mES Cells

The patterns of DNA methylation and histone modifications are sorted into four

subclasses of gene promoters with H3K4me3 (A), bivalent genes (B) with (i) or

without (ii) Polycomb binding, H3K27me3 only (C), and no histone marks (D).

Gene promoters are further annotated as HCP, ICP, and LCP that correspond

to different density of CpG dinucleotides and DNA methylation. Open circles

designate unmethylated CpG sites, filled circles represent methylated CpG

sites, and half-filled circles represent promoters that can be found either meth-

ylated or unmethylated. Unmethylated CpG islands are enriched in HCP pro-

moters with H3K4me3 only or bivalent H3K4/K27 marks. Methylated CpGs are

enriched in LCP and ICP gene promoters without H3K4 and H3K27 trimethy-

lation or with H3K27me3 only. The preferential interaction of Polycomb pro-

teins and Oct4/Nanog complex with different classes of gene promoter is also

illustrated. Different classes of genes that are either expressed or repressed in

mES cells are listed next to each type of promoters.
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mDIP

The methylated DNA immunoprecipitation (mDIP) method was adapted from

a recent study (Zhang et al., 2006; Keshet et al., 2006). Briefly, 2 ug of DNA

was immunoprecipitated with 20 ug of a monoclonal antibody to 5-me-cyto-

sine. The immunoprecipitated DNA was washed, eluted, and quantitated for

microarray hybridization. For details, see the Supplemental Data.

Microarray Hybridization

Gene expression microarrays were done with Agilent Whole Genome microar-

rays (G4122A) using the suggested protocol. These arrays were performed in

triplicate. Methylation microarray hybridizations were done with Agilent

custom mouse promoter microarrays that covered approximately �800 to

+200 bp of 15,561 genes. We labeled 250 ng of J1 and TKO mES cell DNA

for each array. We performed seven replicates of the methylation arrays. For

details, see the Supplemental Data.

Bisulfite Conversion and Sequencing

Bisulfite conversion was performed as described (Shen et al., 2006). Briefly,

we digested genomic DNA with BglII overnight. Digested DNAs were then in-

cubated with a sodium bisulfite solution for 16 hr. Bisulfite-treated DNA was

then desalted and precipitated. We used 1/10 of precipitated DNA for each

PCR. For PCR, we used nested primers to generate our products. PCR prod-

ucts were gel purified and used for either Topo Cloning (Invitrogen) or direct

PCR sequencing.

Quantitative Reverse Transcription PCR

RNA was DNase I treated (Invitrogen) and then quantified again. cDNA conver-

sion was done using the iScript kit (Bio-Rad). Quantitative PCR was done on

a MyIQ Thermocycler (Bio-Rad) using the Sybr Green Supermix (Bio-Rad).

Statistical Methods

Detailed descriptions are found in the Supplemental Data.

UCSC Genome Tracks

Methylation data can be viewed at http://epigenomics.mcdb.ucla.edu/mESC/.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, eight tables, and three figures and can be found with

this article online at http://www.cellstemcell.com/cgi/content/full/2/2/160/

DC1/.
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