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Experimental models

The murine equivalent of the human DNMT1 (DNA
[cytosine-5]-methyltransferase 1; Swiss-Prot accession
number: P26358) gene was deleted in ES cells via gene
targeting [1]. Dnmt1-/- cells possessed dramatically
decreased genomic methylation and were viable;
however, the mutation caused a homozygous lethal
phenotype when introduced into the germline (see Table
of experimental models for DNMT1) [1]. Cre/loxP-
mediated deletion of Dnmt1 in mice has given rise to
several lines of conditional mutants in the nervous
system and the immune system [2,3,4]. Mice carrying a
hypomorphic Dnmt1 allele showed reduced DNMT1
expression (10% that of wild-type levels) and substantial
genome-wide hypomethylation in all tissues [5]. The
hypomorphic mutants developed aggressive T-cell
lymphomas, supporting a causal role for DNA
hypomethylation in tumor formation [5]. When the
Dnmt1 hypomorphic allele was introduced to the
ApcMin/+  intestinal murine model, a complete
suppression of multiple intestinal metaplasia cancerous
polyp formation was observed along with reduced CpG
island methylation in the intestine, suggesting that
Dnmt1 is a genetic suppressor of intestinal polyp
formation [6]. Using the same model, the overall
inhibition of intestinal tumorigenesis in hypomethylated
ApcMin/+ mice was accompanied by microscopic liver
tumors; thus, DNA hypomethylation could suppress late
stages of intestinal tumorigenesis, but promote early
liver lesions [7]. In the human colon cancer cell line
HCT116, genetic deletion of DNMT1 did not lead to
loss of genomic methylation or reactivation of tumor
suppressor genes [8]; however, it has been recently
shown that this model was incorrectly targeted, resulting
in a catalytically active truncated protein [10,9].
DNMT1 protein has been knocked down via siRNA or
oligonucleotide antisense (MG98, see Function and
Localization: In disease) degradation of DNMT1 mRNA
in HCT116 cells [11]. The effect of depleting DNMT1
from human cancer cell lines using this approach is the
basis for MG98 clinical trials. Moreover, the conditional
deletion of DNMT1 leads to mitotic catastrophe and

ATM/ATR-mediated cell death of HCT116 cells [12]. In
HCT116 cells, the conditional deletion model [12]
differs from the siRNA knockdown model [11] in that
the siRNA is an incomplete knockdown with a less
severe phenotype, while the genetic deletion of DNMT1
leads to cell cycle arrest and cell death.

Drugs and Biologicals

Current status

Drugs

DNMT1 (DNA [cytosine-5]-methyltransferase 1)
inhibitors, specifically cytidine analogs, are potent
anticancer reagents in cell culture models in a variety of
human cancers [13]. Hypermethylation of tumor
suppressor genes is a common mechanism of gene
silencing observed in cancer [14]. In seminal
experiments, the inhibition of DNMT1 by either
antisense knockdown, cytidine analogs [15,16] or
genetic approaches [17] was shown to inhibit
adrenocortical Y1 tumors [16] and intestinal cancer [17]
in murine models. These studies, along with testing of
cytidine analog inhibitors in a variety of human cancer
cell cultures [13], have paved the way for inhibition of
DNA methyltransferases in clinical trials. The following
cytidine analogs have been clinically tested for over 25
years: 5-azacytidine (5-aza-CR; Vidaza®, Pharmion), 5-
aza-2 ' -deoxycyt idine (5-aza-CdR; deci tabine;
Dacogen®, Supergen and MGI Pharma), and dihydro-5-
azacytidine (DHAC). The first two are approved by the
FDA for the treatment of myelodysplastic syndrome
(MDS), but show little activity in treating solid tumors
(see DNA methyltransferase inhibitors in current
clinical trials). DHAC is no longer used in clinical trials
due to lack of efficacy after Phase II clinical trials
treating lung cancer [18], mesothelioma [19,20] or
melanoma [21].
It is important to note that one caveat of introducing
demethylating drugs is global DNA hypomethylation,
leading to the reactivation of previously silenced pro-
metastatic genes [22] in breast cancer cells. Whether
demethylating drugs could alter the long-term properties
of cancer cells and lead to undesirable outcomes in vivo
still remains to be seen.

DNA methyltransferase inhibitors in current
clinical trials

Cytidine analogs
5-Aza-CR is a chemical analog of the cytosine residue. 5
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-Aza-CR is activated by uridine-cytidine kinase [23,24]
and is incorporated in place of cytosine into DNA of
replicating cells, as well as RNA during transcription
[25,26]. Once incorporated into DNA strands, 5-aza-CR
works to inhibit all DNA methyltransferases including
DNMT1 by covalently binding to the methyltransferase
catalytic domain of the DNA methyltransferase and
trapping the enzyme on the DNA strand, thus effectively
reducing active DNA methyltransferase and causing
genomic demethylation with subsequent rounds of
replication [25,27,28]. Vidaza® is the first FDA-
approved drug for the treatment of MDS (FDA
application 050794) [29]. Unfortunately, there are
drawbacks to the usage of 5-Aza-CR to treat cancer in
patients. 5-Aza-CR is unstable in aqueous solution and
is highly toxic to cells [30,31]. Even when administered
at low dosages, 5-Aza-CR’s side-effects include nausea,
fatigue, neutropenia, thrombocytopenia, vomiting and
fevers [32]. 5-Aza-CR also has a higher preference for
RNA incorporation in vivo [32].
5-Aza-CdR is enzymatically altered by DCK (dCK) and
replaces cytosines in the DNA of replicating cells [23].
However, it is not incorporated into RNA and does not
alter cellular transcriptional machinery [33]. As 5-aza-
CdR’s mode of action is as a cytosine analog
incorporated into DNA during replication, it also traps
DNA methyltransferases to DNA via covalent binding to
the methyltransferase catalytic domain of the DNA
methyltransferase. Cellular toxicity remains a major
setback for widespread clinical use. In cell culture
systems, 5-aza-CdR induces cell death via P53-mediated
apoptosis due to the activation of ATM/ATR cell cycle
checkpoint pathways in response to genomic damage
[34,35]. Dacogen® received FDA approval in 2006 as a
treatment for MDS [36]. Patients treated with 5-aza-CdR
experience the same side-effects listed for 5-aza-CR
usage [32]. Furthermore, cytosine analogs result in a
permanent alteration of the genome and can be
mutagenic in hypomethylated daughter cells [37,38].
Also, demethylation of the genome in satellite repeat
regions can lead to chromosomal instability and cell
death [5]. As of 01 July 2008, Eisai, the parent of MGI
Pharma, released the results of a Phase III study
(NCT00043134; [39]) showing no statistically
significant advantage of 5-aza-CdR treatment on median
overall survival in elderly MDS patients [40]. Although
disappointing, over 30 clinical trials using 5-aza-CdR,
alone and in combination with other therapies, in a
variety of cancers are ongoing.
Non-cytidine analogs
Procainamide (Procanbid®, King Pharmaceuticals) is an
approved anti-arhythmic and local anesthetic.
Procainamide has  demethyla t ing act iv i ty  by
preferentially binding CpG-rich DNA sequence and

sterical ly hindering DNMT1 binding to CpG
dinucleotides; thus, it does not directly bind to DNMT1
[41]. Procainamide does not inhibit the catalytic activity
of DNMT1, but acts as a partial competitor for the
methyl donor groupS-adenosylmethionine [42]. Since
procainamide has multiple clinical uses, it might not be
best suited for treating DNA methyltransferase-specific
disorders; furthermore, high concentrations are
necessary to see demethylating activity in human PCa
cells in vitro [43]. Another caveat is a recent study in
which no demethylating effects of procainamide were
detected in a variety of human cancer cell lines [44].
Anti-sense inhibitors
MG98 (MGI Pharma and MethylGene), an antisense
oligonucleotide, specifically targets and degrades
DNMT1 mRNA in cells, leading to over 80% reduction
of DNMT1 protein, subsequent genomic demethylation
and reactivation of tumor suppressor genes in colon
cancer cells in vitro [11,45]. In tumor xenograft animal
experiments, tumor cell proliferation slowed and
regression was observed after MG98 administration
[46]. Based on these experiments, clinical Phase I trials
(NCT00003890; [47]) of intravenous infusion of MG98
commenced in patients displaying multiple solid tumors
of different origin [48]. MG98 caused reactive side
effects such as fatigue, fever, chills, rigor and confusion
[48].

DNA methyltransferase inhibitors in preclinical
trials

Cytidine analogs
Zebularine (1-[β-D-ribofuranosyl]-1,2-dihydropyrimidin
-2-one; NSC 309132, Developmental Therapeutics
Program, National Cancer Institute, USA) is a
chemically stable analog of 5-aza-CR with the same
mechanism of action [49]. Zebularine is first processed
by uridine-cytidine kinases, which allows for the analog
to be incorporated into DNA and RNA by replacing
cytosine [50]. Like 5-aza-CR and 5-aza-CdR, DNA
methyltransferases are covalently bound to zebularine-
incorporated DNA strands via the methyltransferase
domain, with an apparent preference for DNMT1 [50].
Upon zebularine treatment, genomic demethylation and
reactivation of tumor suppressor genes was seen in vitro
[49,51,52]. Due to its stability, it can be orally
administered and shows less cellular toxicity in animal
cancer models [53]. Although zebularine decreases the
unwanted toxicity and instability of other cytidine
analogs, its mechanism of action is the same and is
known to be cytotoxic [31]. Furthermore, to achieve
demethylation levels similar to 5-aza-CdR, zebularine
must be administered at 100-fold higher concentration in
vitro [51]. In a preclinical pharmacokinetic study of
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zebularine, zebularine metabolism by the liver leads to
poor systemic bioavailability in monkey, dog, rat and
mouse [54,55]. For these reasons, there are no current
clinical trials using zebularine and research is still at
preclinical stages.
Non-cytidine analogs
H y d r a l a z i n e  ( 1 - h y d r a z i n o p h t h a l a z i n e
m o n o h y d r o c h l o r i d e ;  a p r e s o l i n e ,  N o v a r t i s
Pharmaceuticals), a cardiovascular hypertensive drug, is
a  w e a k  n o n - n u c l e o s i d e  i n h i b i t o r  o f  D N A
methyltransferases through interaction of its nitrogen
atoms and the catalytic site of DNA methyltransferases.
Hydralazine could cause genomic demethylation and
tumor suppressor gene reactivation in breast cancer cell
lines [56]. However, when testing suppression of DNA
methylation by hydralazine in direct comparison to 5-
aza-CR in a variety of cancer cell lines, hydralazine
failed to reactivate tumor suppressor genes or reduce
DNA methylation levels [44]. Thus, the role of
hydralazine as a DNA methyltransferase inhibitor is still
controversial.
RG108 (2-[1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl]-3-
[1H-indol-3-yl] propanoic acid, first synthesized in
Frank Lyko’s laboratory [German Cancer Research
Center Division of  Epigenetics, Heidelberg, Germany],
now produced by Sigma Aldrich), a novel small
molecule, effectively inhibited DNMT1 activity
(IC50=115nM) with subsequent demethylation and
reactivation of tumor suppressor genes in the human
cancer cell lines NALM-6 (acute lymphoblastic
leukemia B-cell line) and HCT116 (colon carcinoma cell
line) [57]. The inhibitor sterically blocks the catalytic
binding site of the human DNMT1 enzyme to induce
DNA demethylation [57]. RG108 does not direct
demethylation of minor satellite repeats, indicating that
RG108 administration will not produce cellular genomic
instability and potential mutagenesis [57].

Patents

Please see Table 1 for a list of relevant DNMT1 patents.

Ligands and antibodies

Examples of DNMT1 antibodies (85 listed on
Biocompare; keyword DNMT1) are given in Table 2.

Therapeutic antibodies

As of 18 November 2008, we are not aware of any
reports of immunodepletion or immunosuppressive
approaches to target DNMT1 in disease.

Next frontiers

Due to the toxicity of cytidine analogs, researchers are
looking into novel small molecule inhibitors directly
targeting either the catalytic region of DNMT1 or the
target recognition domain (TRD). However, this
research is hindered by the lack of known three-
dimensional structures for full-length human DNMT1
(as of 18 November 2008, we are not aware of a three-
dimensional structure of human DNMT1 on PDB).
Although MG98 directly targets DNMT1 [11], the high
doses necessary to knockdown DNMT1 protein
produced multiple side-effects outweighing any
potential benefits for patients [48].

Function and Localization

In homeostasis

Function of DNMT1 in gene silencing

Human DNMT1 (DNA [cytosine-5]-methyltransferase
1) is a nuclear protein present in somatic cells and is
highly expressed in fetal tissue, moderately expressed in
adult brain, heart, thymus and kidney, and weakly
expressed in adult skeletal muscle, colon, spleen, liver
and lung [58]. When normal mammalian somatic cells
are not undergoing mitosis, DNMT1 exhibits a
diffusible nucleoplasmic distribution in non-S phase
cells and once S phase begins, DNMT1 is targeted to
replication foci via N-terminal domains such as the
replication foci-directing domain (RFDD) and the
PCNA (cyclin)-binding domain (see Figure 1) [59,60].
Furthermore, DNMT1 can form a complex with the co-
repressor protein DMAP1 and histone-modifying
enzymes at the replication foci [61,62]. The concept of
DNA methylation regulating tissue-specific gene
expression was proposed by two independent groups in
1975 [63,64], yet the enzyme that catalyzes this process
in mammals was not identified until the late 1980s [65].
The mammalian DNMT1 genomic sequence was found
based on homology to bacterial type II restriction
methyltransferase [66]. DNMT1 catalyzes the addition
of a methyl group from the donor S-adenosylmethionine
onto the 5' carbon of cytosine residues located in CpG
dinucleotides [67,68,69]. In vitro kinase assays revealed
that the mammalian DNMT1 preferentially targets
hemimethylated DNA, thus maintaining patterns of
DNA methylation during replication [70,71,72].
DNM3A (DNMT3a) and DNM3B (DNMT3b) were
cloned from the murine genome with homology to
DNMT1, and these enzymes are responsible for
establishing de novo methylation patterns during
development [73,74]. DNA methyltransferase-catalyzed
DNA methylation is one of the best-characterized
epigenetic events, which are classified as heritable
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changes in DNA structure that do not alter DNA base
sequence [75].
DNA methylation can induce gene silencing in a variety
of ways. First, the addition of a methyl group to CpG
dinucleotides in the proximal promoters of genes can
sterically hinder the binding of transactivating factors
[76]. Second, methylated CpG dinucleotides are binding
sites for repressive proteins that, when recruited to
methylated DNA, either directly repress transcription or
recruit chromatin remodeling proteins such as histone
deace ty l a se s  t o  s i l ence  gene  t r ansc r ip t i on
[77,78,79,80,81]. Furthermore, DNMT1 has been shown
to be a transcriptional repressor in the absence of
enzymatic activity by binding to RB (pRb) protein and
inhibiting E2F transcription targets [82,83].

DNMT1 isoforms

DNMT1 has different translational start sites [84] and
exists in different splice variants [85]. The predominant
isoform in human somatic cells comprises 1616 amino
acid residues [86]. A shorter form of DNMT1 called
DNMT1o is found specifically in growing oocytes and
is also expressed during pre-implantation (see Figure 1)
[85,87]. DNMT1o lacks the N-terminal 114 amino acid
residues and possesses increased stability against
degradation in oocytes [88]. Another splice isoform is
DNMT1b, whose transcript contains the in-frame
addition of 48 nucleotides between exons 4 and 5
[89,90]. Since the amount of DNMT1b is less than 5%
the level of the predominant DNMT1 in somatic cells, it
is unclear what role DNMT1b plays in somatic cells
[89].

DNMT1: role in embryonic development,
imprinting and genome stability

The role of DNMT1 in mammalian cells has been
thoroughly investigated in mice or murine ES cells. The
loss of functional Dnmt1 alleles produces several major
changes including severe demethylation of the genome,
a modest increase in mutation rates in ES cells and
defects in the mismatch repair system [91,92,93]. Dnmt1
-/- mouse ES cells grow normally in the undifferentiated
state, but enter apoptosis when forced to differentiate
[1]. Apoptosis is also the cause of death of embryos
lacking Dnmt1 during mid-gestation [1]. Furthermore,
inactivation of all X chromosomes is observed in mutant
embryos due to the demethylation of the Xist promoter
and its subsequent reactivation [94]. Bi-allelic
expression of imprinted genes is also observed in Dnmt1
-/- embryos [95]. Finally, Dnmt1 is required for the
repression of retrotransposons in mammalian somatic
cells, thus enforcing genomic stability [96,97].

In disease

Cancer

Under the theory of Knudson’s two-hit model [98],
complete loss of function of a tumor suppressor gene
requires loss of function on both alleles. Along with
traditional DNA sequence mutations in tumor
suppressor genes, aberrant DNA hypermethylation
directed by DNMT1 and/or DNM3B [99] of the
promoter of the wild-type allele can render a
heterozygous genotype with complete loss of function.
Inactivation of genes in a wide variety of cancer cell
lines is frequently associated with hypermethylation of
CpG islands in promoters of tumor suppressor genes
[100] and can be grouped into the following categories:
cell cycle regulation and apoptosis (CDKN2A [p14ARF],
CDKN2B [p15INK4b], CDKN2A [p16INK4a] APC,
HIC1), DNA repair genes (MLH1, GSTP1, MGMT,
BRCA1) and metastatic genes (CDH1, TIMP3, DAPK1,
TP73 [p73], THBS1 [TSP], VHL) [101,102,103,104].
However, the underlying mechanisms leading to
aberrant DNA methylation patterns in cancer cells have
yet to be elucidated. This DNA methylation work in
animal cancer models and human cell lines has laid the
framework for clinical trials investigating the role of
DNMT1 inhibitors in a variety of cancer sub-types, such
as MDS, AML/CML, breast cancer, renal cell
carcinoma, and prostate cancer.

MDS

5-Aza-CR and 5-aza-CdR are the two most widely used
DNA methyltransferase inhibitors in clinical practice,
with both 5-aza-CR and 5-aza-CdR approved by the
FDA for the treatment of MDS [105,36]. According to
Dacogen® literature, clinical injection could improve
MDS symptoms by altering bone marrow function to
increase hematological cell counts and improve overall
patient  health.  By altering DNA methylation
abnormalities observed in MDS, clinical injections of 5-
aza-CR and 5-aza-CdR have shown promising results.
Low-dose subcutaneous injections of 5-aza-CR in high-
risk MDS patients yielded successful response rates,
with a prolongation of transformation into the more
advanced AML [29]. With a low-dosage administration
schedule, 5-aza-CdR has also shown promising survival
advantages in patients with high-risk MDS and a
reduction in transformation into advanced AML
[106,107]. Currently, there are multiple ongoing MDS
clinical studies to evaluate optimal dosage as well as the
effects of either 5-aza-CR or 5-aza-CdR in combination
with other chemotherapeutics.

AML/CML
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Aggressive forms of MDS can transform into AML.
AML patients treated with 5-aza-CR showed marked
remission and prolonged survival rates, providing
improved clinical benefits to patients with this disease
[108]. 5-Aza-CdR treatment of AML also shows
improved response rates when given in low dosages
[109], and currently Phase I /II trials are ongoing to
optimize both 5-aza-CR (27 trials, e.g. NCT00569010;
[110]) and 5-aza-CdR (18 trials, e.g. NCT00760084;
[111]) treatment in patients diagnosed with AML. CML
results from a chromosomal translocation (Philadelphia
chromosome) resulting in the functional fusion protein
BCR–ABL, a tyrosine kinase [112]. A recent Phase II
clinical trial (NCT00054431) revealed that 5-aza-CdR
administered along with imatinib, a tyrosine kinase
inhibitor, increased the percentage of favorable
responses in imatinib-resistant CML patients [113].
Clinical trials are ongoing to investigate the effects of
DNA methyltransferase inhibitors for treatment of
patients with CML as well as other leukemias.

Breast cancer

A non-randomized proof-of-principle study involved the
administration of hydralazine in combination with
valproate, a histone deacetylase inhibitor, along with
chemotherapy to 16 patients. Treatment was well
tolerated and appeared to increase the efficacy of
patients’ chemotherapies, for no patients’ symptoms
progressed [114]. A Phase I/II clinical trial is ongoing to
determine the maximal tolerated dose of hydralazine
used in conjunction with chemotherapy in women with
breast cancer, with a following Phase II trial to evaluate
the efficacy of hydralazine in producing a demethylation
effect (NCT00575978; [115]).
A Phase I trial is ongoing to study the side-effects and
best dose of 5-aza-CdR in treating patients with
advanced solid tumors (including breast cancer) that
have  no t  r e sponded  to  p rev ious  t r ea tmen t
(NCT00030615 ;  [116 ] ) .

Renal cell carcinoma/multiple solid tumors

In preclinical experiments, colon cancer cell lines
treated with the antisense inhibitor of DNMT1, RG108,
showed subsequent genomic demethylation and
reactivation of tumor suppressor genes [11,45]. MG98
(MGI Pharma and MethylGene),  an antisense
oligonucleotide, specifically targets and degrades
DNMT1 mRNA in cells, leading to over 80% reduction
of DNMT1 protein, subsequent genomic demethylation
and reactivation of tumor suppressor genes in colon
cancer cells in vitro [11,45]. In tumor xenograft animal
experiments, tumor cell proliferation slowed and
regression was observed after MG98 administration

[46], thus providing good evidence that abnormal
upregulation of DNMT1 might play a direct role in
cancer pathogenesis. Based on these experiments,
clinical Phase I trials (NCT00003890; [47]) of
intravenous infusion of MG98 commenced in patients
displaying multiple solid tumors of different origin [48].
MG98 caused reactive side-effects such as fatigue,
fever, chills, rigor and confusion [48].

Prostate cancer

In human prostate cancer cell culture models,
investigators have shown that DNMT1 activity and
transcriptional levels are significantly higher in
cancerous cells versus benign prostate cancer cells
[117]. In mouse models of prostate cancer, treatment
with the DNA methyltransferase inhibitor 5-aza-CdR
prevented prostate cancer tumor formation and no
occurrence of hypermethylation of the repair gene Mgmt
was observed [118]. Furthermore, genetic analysis of
induced murine prostate tumors revealed a 2.4%
hypermethylation change out of 1200 loci investigated,
thus providing evidence for a functional role of DNA
methylation in prostate cancer development [119]. A
clinical Phase II trial is ongoing to determine what
effects 5-aza-CR treatment has in prostate cancer
patients (5-aza-CR is only approved by the FDA for
MDS) when combined with hormone replacement
therapy (NCT00384839; [120]).

Cancer subtypes

There are several ongoing clinical trials to assess the
role of DNA methyltransferase inhibitors in a variety of
cancer subtypes, due to the FDA approval of 5-aza-CR
and 5-aza-CdR for clinical treatment of MDS and AML,
and the reactivation of tumor suppressor genes in cell
culture models of various human cancers [13].
Currently, 5-aza-CR or 5-aza-CdR, either alone or in
combination with other chemotherapy agents, are being
tested in the following cancer subtypes: lymphoma
(NCT00109824  [121] ,  NCT00089089  [122] ,
NCT00079378  [123 ] ,  NCT00543582  [124 ] ,
NCT00589160  [125 ] ,  NCT00336063  [126 ] ,
NCT00005639 [127], NCT00349596 [128]), lung cancer
(NCT00387465 [129] ,  NCT00006019 [130]) ,
esophageal cancer (NCT00041158 [131], NCT00019825
[132]), squamous cell cancer of the head/neck
(NCT00443261 [133]), thyroid cancer (NCT00085293
[134], NCT00004062 [135]), melanoma (NCT00398450
[136], NCT00217542 [137], NCT00030615 [116],
NCT00002980 [138]), kidney cancer (NCT00561912
[139], NCT00217542 [137]) and multiple myeloma
(NCT00412919 [140], NCT00006019 [130]). Preclinical
data from a variety of cancer cell lines have shown a
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dramatic alteration of gene expression after cancer cells
in vitro have been treated with either 5-aza-CR or 5-aza-
CdR [100,101,102,103,104]. Through the genetic
inhibition of DNMT1, cancer cells have responded by
inducing growth arrest and cell death [12]. This
preclinical data furthers the notion that DNA
methylation abnormalities play a direct role in the
genetic alterations leading to cancer.

Hemoglobin disorders: -thalassemia and sickle
cell disorder

Sickle cell disorder is linked to a substitution mutation
in the HBB (β-globin) gene, causing a deformation of
red blood cells [141]. β-thalassemia is an hereditary
disease resulting in decreased production of the adult
HBB chain, resulting in the premature degradation of
red blood cells [142]. In the past, researchers believed
that inducing DNA hypomethylation by inhibiting DNA
methyltransferases would lead to the reactivation of the
fetal hemoglobin gene promoter and potentially
compensate for the reduction of the adult HBB. Initial
clinical studies showed that 5-aza-CR, a DNA
methyltransferase inhibitor, led to a reactivation of fetal
hemoglobin in β-thalassemia patients and those with
sickle cell disorder [143,144]; however, studies were
halted due to the mutagenic potential of cytidine analogs
in animals [145]. Biochemical studies have shown that
DNA methyltransferase-directed methylation of one
CpG dinucleotide in the promoter of fetal γ-globin
r e g u l a t e s  t h e  f e t a l - t o - a d u l t  g l o b i n  s w i t c h
[146,147,148,149]. The FDA approval of 5-aza-CR and
5-aza-CdR as administered therapeutics to patients with
MDS renewed interest in the use of these drugs in
hemoglobin disorders (NCT00000623; [150]) [151,152].
Recently, however, there is a growing body of evidence
suggesting that the regulation of globin genes is
independent of DNA methylation and the previous
reports of reactivation of fetal γ-globin after treatment
with demethylating agents is occurring through an
unknown mechanism [153,154].

Endometriosis

Gene regulation changes have been previously observed
in endometrial cells from endometriosis patients,
suggesting that alterations in gene expression underlie
the disease [155,156]. Since DNA methylation mediates
gene repression, researchers are currently investigating
DNA methylation changes in endometrial tissue from
patients diagnosed with endometriosis. An increase in
DNMT1 in laser-capture micro-dissected endometrial
cells of endometriosis patients has been reported;
however, it is unclear if the increase in DNMT1 levels

correlates with aberrant DNA methylation patterns in
diseased cells [157].

Neurological disorders

While studying gene expression changes in post-mortem
brains of schizophrenic patients, DNMT1 mRNA
overexpression is observed in inhibitory cortical neurons
[158]. Furthermore, tentative evidence suggests that
DNMT1 overexpression leads to hypermethylation of
RELN (reelin) and DCE1 (GAD67) genes in a
subpopulation of inhibitory neurons of schizophrenic,
but not bipolar, brains [159,160,161].

Imprinting disorders

Imprinted loci are no longer repressed in Dnmt1-/-

embryos, thus implicating DNMT1 misregulation in
imprinting disorders [95]. DNA methylation changes
could be involved in Beckwith-Wiedemann syndrome,
Silver-Russell syndrome, Prader-Willi syndrome, and
Angelman syndrome [162,163,164,165].

Characteristic Structural Features

Domains and motifs

The DNMT1 (DNA [cytosine-5]-methyltransferase 1)
enzyme has two domains: the regulatory N-terminal
region and the C-terminal regarded as the catalytic
domain (see Figure 1). The DNA TRD is located at the
beginning of the N-terminal domain (amino acids
122–417) [166]. The N-terminal domain interacts with
PCNA, RB, HDAC1/2 and DMAP1 [60,61,82]. A
replication foci-targeting domain is also present in the N
-terminal domain, which is required for import of
DNMT1 into nuclei and association with the replication
foci [167,168]. A cysteine-rich region containing zinc-
binding sites (CXXC motif) is centered in the N-
terminal. The CXXC motif is present in all mammalian
cytosine methyltransferases, methyl-CpG-binding
proteins and various proteins affecting cytosine
methylation [168,169]. Two bromo-adjacent homology
(BAH) domains are located at the end of the N-terminal
domain. BAH motifs are found in origin recognition
complex proteins and in chromatin regulatory proteins
[170]. The C-terminal part of DNMT1 functions as the
catalytic domain and is only active when the regulatory
domain is also present [171,71].
The three-dimensional structure of the mammalian
DNMT1 is currently unknown (as of 18 November 2008
and as reported in [172]), with crystal structure
information available for only bacterial DNA
methyltransferases [173,174]. Structural work on
bacter ia l  HhaI  DNA methyl t ransferase  f rom
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Haemophilus haemolyticus demonstrates that the
substrate cytosine is completely flipped out of the helix
during the modification reaction [173,174].  Because the
c a t a l y t i c  d o m a i n  o f  b a c t e r i a l  H h a I  D N A
methyltransferase is highly homologous to mammalian
DNMT1, the crystal structure of bacterial DNA
methyltransferase has provided much insight into the
possible enzymatic reaction of DNMT1.   It is predicted
that DNMT1 could also methylate cytosine through a
base-flipping mechanism.

Targeted features

The mechanism of action of cytidine analogs as DNMT1
inhibitors is to incorporate into replicating strands of
DNA in place of the endogenous cytosine bases [28,49].
Once cytidine analogs are incorporated into DNA, they
covalently trap DNMT1 at the methyltransferase
catalytic domain (amino acids 1139–1616), thus causing
depletion of DNA methyltransferase enzyme through
subsequent rounds of DNA replication [28,49]. RG108
is a small molecule that specifically targets and directly
binds the DNA methyltransferase catalytic domain
(amino acids 1139–1616) [57]. However, all of the
above inhibitors target all members of the DNA
methyltransferase family, including the de novo
methyltransferases DNM3A (DNM3Ta) and DNM3B
(DNMT3b) [28,49,57]. The antisense oligonucleotide
MG98 targets DNMT1 mRNA for degradation, thus
creating a transcriptional blockade of DNMT1 protein
[11]. However, the largest obstacle in the search for
novel DNA methyltransferase inhibitors is the lack of
three-dimensional structure modeling of mammalian
DNA methyltransferases. In order to develop small
molecule inhibitors to different protein domains of
DNMT1, the crystal structure of human DNMT1 is first
necessary. It is theoretically possible that inhibition of
the DNA TRD would also lead to hypomethylation.
However, DNA sequence specificity and how DNMT1
targets specific DNA sequence for methylation, in either
normal or cancer genomes, is currently unknown. These
facts make it difficult to direct inhibition to the TRD of
DNMT1.
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Kim H.S., Park Y.N., Park C.K., Cho J.W., Park Y.M., Jung
G. Gastroenterology (2008)

210.
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Figure 1 DNMT1 structure
 The DNMT1 protein (EC 2.1.1.37) comprises 1616 amino acid residues with multiple functional domains. Individual
domains of DNMT1 are as follows: DMAP1-binding domain (green, amino acids 1–120), nuclear localization signal
domain (putative) (grey, amino acids 117–205), TRD (blue, amino acids 122–417), PCNA-binding region (yellow,
amino acids 163–174), RFDD (by similarity) (purple, amino acids 331–550), CXXC zinc finger domain (sepia, amino
acids 646–692), BAH domains (pink, amino acids 775–880 and 972–1100), six glycine–lysine repeats (black, amino
acids 1110–1122) and methyltransferase catalytic domain (amino acids 1139–1616) with conserved motifs (light blue
bars). Arrows mark the beginning of the somatic isoform DNMT1 enzyme (DNMT1) or the oocyte-specific isoform
DNMT1o.
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Table 1 
Patent/application Date Assignee(s) Reference Title Comments

US7038038 23 September 2004 Pharmion 175 Synthesis of 5-
azacytidine
(VIDAZA)

The present
invention provides a
method for the
preparation of 5-aza
-CR, wherein 5-aza-
CR is represented
by the structure. The
method involves the
silylation of 5-aza-
CR, followed by the
coupling of silylated
5-aza-CR to a
protected -D-
ribofuranose
derivative. The
coupling reaction is
catalyzed by
trimethylsilyl
trifluoromethanesulf
onate. The present
invention provides
for the first time a
method that
synthesizes 5-aza-
CR that is suitable
for use in humans
and is amenable to
large-scale
synthesis
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Patent/application Date Assignee(s) Reference Title Comments

US6982253 03 January 2006 SuperGen 176 Liquid formulation of
decitabine and use
of the same
(Dacogen®)

Pharmaceutical
formulations, kits
and vessels are
provided for
delivering 5-aza-
CdR to a patient
suffering from a
disease in need of
treatment with 5-aza
-CdR. The
pharmaceutical
formulation
comprises 5-aza-
CdR solvated in a
non-aqueous
solvent that
comprises glycerin,
propylene glycol,
polyethylene glycol
or combinations.
Such formulations
are more chemically
stable than
conventional liquid
formulations of 5-
aza-CdR containing
more than 40%
water in volume.
The pharmaceutical
formulations can be
used for any disease
that is sensitive to
the treatment with 5-
aza-CdR, such as
hematological
disorders and
cancer
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Patent/application Date Assignee(s) Reference Title Comments

US6953783 11 October 2005 MethylGene 177 Modulation of gene
expression by
combination therapy
(MG98 antisense
oligonucleotide)

The invention
relates to the
modulation of gene
expression. In
particular, the
invention relates to
compositions
comprising
antisense
oligonucleotides
which inhibit
expression of a
gene in operable
association with
protein effectors of a
product of that gene
and methods of
using the same. In
addition, the
invention relates to
the modulation of
mammalian gene
expression
regulated by
methylation

Targeted Proteins database   TARGET ASSESSMENT

©2009 CurrentBiodata
18



Patent/application Date Assignee(s) Reference Title Comments

US7250416 31 July 2007 SuperGen 178 Azacytosine analogs
and derivatives

Compounds and
compositions of 5-
aza-CR analogs and
derivatives are
provided. In one
aspect of the
invention, analogs or
derivatives of 5-aza-
CdR and 5-aza-CR
are provided with
modification at the 4
- and 6-position of
the triazine ring, at
the 1'–6' position of
the ribose ring or
combinations
thereof. Methods of
synthesizing and
manufacturing these
analogs and
derivatives are also
provided. These
compounds can be
formulated into
pharmaceutical
compositions that
can be used for
treating any disease
that is sensitive to
the treatment with 5-
aza-CdR or 5-aza-
CR, such as
hematological
disorders and
cancer
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Patent/application Date Assignee(s) Reference Title Comments

WO03012051 30 July 2002 Selker EU, Matsen
CB, Jones PA,
Cheng J, Greer SB
and Marquez VE

179 Inhibitor of DNA
methylation
(zebularine)

Zebularine has
hypomethylating
activity, and can be
used to inhibit,
reverse and/or
reduce DNA
methylation in vivo
and in vitro.
Methods are
provided for treating
methylation-linked
conditions through
the application of 2-
pyrimidinone
derivatives, such as
zebularine.
Compositions,
including
pharmaceutical
compositions,
comprising such
derivatives are also
provided. Also
provided are kits for
use in inhibiting
DNA methylation,
which kits include an
amount of a 2-
pyrimidinone
derivative

EP2005002437 02 August 2005 Deutsches
Krebsforschungszen
trum (Germany) and
Institute of
Biochemistry and
Biophysics, Polish
Academy of
Sciences (Poland)

180 Inhibitors of DNA
methylation in tumor
cells (RG108 and
derivatives)

The compounds
covered are capable
of binding to DNA
methyltransferases,
particularly human
DNMT1, and
inhibiting their
catalytic activity.
Preferably, such
inhibitors should
have a different
mode of action than
structural analogs of
cytidine, and they
should be more
specific and less
toxic than other
inhibitors of DNA
methylation

Targeted Proteins database   TARGET ASSESSMENT

©2009 CurrentBiodata
20



Patent/application Date Assignee(s) Reference Title Comments

US2006252723 30 March 2006 MethylGene 181 Combined therapy
utilizing reduction of
DNA
methyltransferase
expression and/or
activity in interferon

The invention
provides methods
for the treatment of
cancer comprising a
reduction of DNA
methyltransferase
expression and/or
activity and
treatment and/or
induction of
interferon. The
invention overcomes
resistance of cancer
cells to interferon
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Patent/application Date Assignee(s) Reference Title Comments

WO2007041071 29 September 2005 Phiasivongsa P and
Redkar S

182 Oligonucleotide
analogues
incorporating 5-aza-
cytosine therein

Oligonucleotide
analogs are
provided that
incorporate 5-aza-
CR in the
oligonucleotide
sequence, e.g. in
the form of 5-aza-
CdR or 5-aza-CR. In
particular,
oligonucleotide
analogs rich in 5-aza
-CdR-
deoxyguanosine
islets (DpG and
GpD) are provided
to target the CpG
islets in the human
genome, especially
in the promoter
regions of genes
susceptible to
aberrant
hypermethylation.
Such analogs can
be used for
modulation of DNA
methylation, such as
effective inhibition of
methylation of
cytosine at the C5
position. Methods
for synthesizing
these
oligonucleotide
analogs and for
modulating nucleic
acid methylation are
provided. Also
provided are
phosphoramidite
building blocks for
synthesizing the
oligonucleotide
analogs, methods
for synthesizing,
formulating and
administering these
compounds or
compositions to treat
conditions, such as
cancer and
hematological
disorders

Targeted Proteins database   TARGET ASSESSMENT

©2009 CurrentBiodata
22



Table 2 

 
Table of experimental models for DNMT1 

Manufacturer Details

Abcam Mouse anti-human DNMT1 monoclonal antibody, unconjugated,
ab54759 Rabbit anti-DNMT1 polyclonal antibody, unconjugated,
ab16632 Chicken anti-DNMT1 polyclonal antibody,
unconjugated, ab14290 Mouse anti-DNMT1 monoclonal
antibody, unconjugated, clone 60B1220, ab13537

Abgent Rabbit anti-DNMT1 C-terminal S1602 RB1848 polyclonal
antibody, unconjugated, ap1032a

Abnova Mouse anti-human DNMT1 monoclonal antibody, unconjugated,
clone 2b5, h00001786-m01 Anti-DNMT1 monoclonal antibody,
unconjugated, clone 60B1220.1, MAB0079

Imgenex  Mouse anti-DNMT1 monoclonal antibody, unconjugated, clone
60B1220.1, IMG-261 (putative chromatin immunoprecipitation
grade)

Millipore Chicken anti-DNMT1 antibody, AB3429  Rabbit anti-DNMT1
polyclonal antibody, 07-688

New England Biolabs Human DNMT1 N-terminal, M0231S

Target Model/assay Disease/phenotype/ass
ay

Reference Source (if applicable)

DNMT1 Dnmt1 homozygous
knockout murine ES
cells

Reduced genomic
methylation and
targeting

1 Jaenisch R laboratory,
Whitehead Institute for
Biomedical Research,
USA

DNMT1 Dnmt1 homozygous
knockout mouse

Reduced genomic
methylation, apoptosis,
mid-gestational
embryonic lethality

1 Jaenisch R laboratory,
Whitehead Institute for
Biomedical Research,
USA

DNMT1 Dnmt1 conditional
knockout mouse:
nervous system

NEST (nestin)-Cre
(whole CNS) conditional
deletion of Dnmt1,
genomic
hypomethylation in
neurons and glia,
perinatal lethality

2 Fan G, University of
California Los Angeles,
USA

DNMT1 Dnmt1 conditional
knockout mouse: T-cells

Impaired survival of T-
cell receptor / double-
positive T-cells and
generation of atypical
CD8+; T-cell receptor /+
cells (LCK-Cre line);
differential cytokine
expression in peripheral
T-cells (CD4+-Cre line)

3 Wilson CB, Department
of Immunology,
University of
Washington, USA
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Target Model/assay Disease/phenotype/ass
ay

Reference Source (if applicable)

DNMT1 Dnmt1 hypomorphic
allele mouse

Reduces Dnmt1
expression to 10% of
wild-type levels, genome
-wide hypomethylation in
all tissues, runted at
birth, aggressive T-cell
lymphomas (4–8 months
of age)

5 Jaenisch R laboratory,
Whitehead Institute for
Biomedical Research,
USA

Dnmt1; ApcMin/+ Dnmt1 hypomorphic
allele mouse crossed
with ApcMin/+ mouse

Intestinal cancer model
(ApcMin/+ mice):
crossing onto Dnmt1
hypomorphic allele
mouse relieved intestinal
cancer formation; liver
microtumor formation

6,7 Laird PW, Norris
Comprehensive Cancer
Center, USA

DNMT1 DNMT1 deletion of
exons 2–5 in human
HCT116 cells

Colon cancer cells,
limited reduction of
genomic methylation 8;
incorrect targeting
leading to hypomorphic
allele and a truncated,
catalytically active
DNMT1 protein 9,10

8,9,10 Vogelstein B, Johns
Hopkins Oncology
Center, USA

DNMT1 siRNA knockdown of
DNMT1 in human
HCT116 cells

Colon cancer cells,
reduced genomic
methylation, tumor
suppressor gene
reactivation, maintains
10–20% of normal
DNMT1 protein level

11 Szyf M, McGill
University, Canada

DNMT1 DNMT1 conditional
deletion in human
HCT116 cells

Colon cancer cells,
reduced genomic
methylation, checkpoint
arrest, mitotic
catastrophe, cell death

12 Li E, Novartis Institutes
for BioMedical Research,
China
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